Limits on nature-based solutions for coastal adaptation based on climate change indicators

Author(s):  
Rosanne Martyr-Koller ◽  
Tabea Lissner ◽  
Carl-Friedrich Schleussner

<p>Climate impacts increase with higher warming and evidence is mounting that impacts increase strongly above 1.5°C. Therefore, adaptation needs also rise substantially at higher warming levels. Further<strong>, </strong>limits to adaptation will be reached above 1.5°C and loss and damage will be inferred. Coastal Nature-based Solutions (NbS) have arisen as popular adaptation options, particularly for coastal developing economies and Small Island Developing States (SIDS), because of their lower overall costs compared to traditional grey infrastructure approaches such as seawalls and levees; their economic co-benefits through positive effects on sectors such as tourism and fisheries; and a broader desire to shift toward so-called blue economies. Two NbS of particular interest for coastal protection are: 1) coral reefs, which reduce coastal erosion and flooding through wave attenuation; and 2) mangroves, which provide protection from storms, tsunamis and coastal erosion. Although there is international enthusiasm to implement these solutions, there is limited understanding of the future viability of these ecosystems, particularly in their capacities as coastal adaptation service providers, in a warmer world.</p><p>In this presentation, we highlight how long and with how much coverage coral and mangrove ecosystems can provide coastal protection services for future climate scenarios, using air temperature and sea level rise as climate change indicators. A mathematical model for each ecosystem is developed, based on the physical parameters necessary for the sustainability of these ecosystems. We investigate the protective capabilities of each ecosystem under warming and sea level rise scenarios compatible with: below 1.5°C warming; below 2°C warming; warming based on current global commitments to carbon emissions reductions (3-3.5°C); and with no carbon mitigation (6°C). Results show what temperature and sea level rise values beyond which these ecosystems can no longer provide coastal protective services. These results have also been framed in a temporal window to show when these services may not be feasible, beyond which more costly adaptation measures and/or loss and damage may be incurred.</p>


2020 ◽  
Vol 8 (6) ◽  
pp. 380 ◽  
Author(s):  
Daniel Ware ◽  
Andrew Buckwell ◽  
Rodger Tomlinson ◽  
Kerrie Foxwell-Norton ◽  
Neil Lazarow

Climate change impacts, sea level rise, and changes to the frequency and intensity of storms, in particular, are projected to increase the coastal land and assets exposed to coastal erosion. The selection of appropriate adaptation strategies requires an understanding of the costs and how such costs will vary by the magnitude and timing of climate change impacts. By drawing comparisons between past events and climate change projections, it is possible to use experience of the way societies have responded to changes to coastal erosion to inform the costs and selection of adaptation strategies at the coastal settlement scale. The experience of implementing a coastal protection strategy for the Gold Coast’s southern beaches between 1964 and 1999 is compiled into a database of the timing, units, and cost of coastal protection works. Records of the change to shoreline position and characteristics of local beaches are analysed through the Bruun model to determine the implied sea level rise at the time each of the projects was completed. Finally, an economic model updates the project costs for the point in the future based on the projected timing of sea level rise and calculates a net present value (NPV) for implementing a protection strategy, per km, of sandy beach shoreline against each of the four representative concentration pathways (RCP) of the Intergovernmental Panel on Climate Change (IPCC) to 2100. A key finding of our study is the significant step-up in expected costs of implementing coastal protection between RCP 2.6 and RCP 8.5—from $573,792/km to $1.7 million/km, or a factor of nearly 3, using a social discount rate of 3%. This step-up is by a factor of more than 6 at a social discount rate of 1%. This step-up in projected costs should be of particular interest to agencies responsible for funding and building coastal defences.



Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1741
Author(s):  
Ahmad Hadi Mohamed Rashidi ◽  
Mohamad Hidayat Jamal ◽  
Mohamad Zaki Hassan ◽  
Siti Salihah Mohd Sendek ◽  
Syazana Lyana Mohd Sopie ◽  
...  

The shoreline of Malaysia is exposed to threats of coastal erosion and a rise of sea level. The National Coastal Erosion Study, 2015 reported that 15% of an 8840 km shoreline is currently eroding, where one-third of those falls under the critical and significant categories that require structural protection. The Study of Sea Level Rise in Malaysia, 2017 presented a sea-level increase of 0.67–0.74 mm on average yearly. This study reviewed selected coastal protection structures along the shoreline of Malaysia as an erosion control and sea-level rise adaptation based on coastal management strategies. Hard structures such as rock revetment and breakwater are commonly used as erosion protection systems in the “hold the line” strategy. Increased platform level of seawalls and earth bunds, considered as an “adaptation” approach, are effective in erosion protection and are adaptive to sea-level rise. Mangrove replanting is suitable as a “limited intervention” approach in minimizing the long-term impact of both threats. However, offshore breakwater, groyne, and geotextile tubes are solely for protection purposes and are not as effective for sea-level rise adaptation. As the sea level is continuously increasing, their function as coastal protection will also become less effective. In summary, this comprehensive review on coastal protection in Malaysia will benefit the related agencies on the future assessment.





2019 ◽  
Author(s):  
Norman S. Levine ◽  
◽  
Landon C. Knapp ◽  
Alex Braud ◽  
Casey Conrad


The Holocene ◽  
2021 ◽  
pp. 095968362110482
Author(s):  
Kelvin W Ramsey ◽  
Jaime L. Tomlinson ◽  
C. Robin Mattheus

Radiocarbon dates from 176 sites along the Delmarva Peninsula record the timing of deposition and sea-level rise, and non-marine wetland deposition. The dates provide confirmation of the boundaries of the Holocene subepochs (e.g. “early-middle-late” of Walker et al.) in the mid-Atlantic of eastern North America. These data record initial sea-level rise in the early Holocene, followed by a high rate of rise at the transition to the middle Holocene at 8.2 ka, and a leveling off and decrease in the late-Holocene. The dates, coupled to local and regional climate (pollen) records and fluvial activity, allow regional subdivision of the Holocene into six depositional and climate phases. Phase A (>10 ka) is the end of periglacial activity and transition of cold/cool climate to a warmer early Holocene. Phase B (10.2–8.2 ka) records rise of sea level in the region, a transition to Pinus-dominated forest, and decreased non-marine deposition on the uplands. Phase C (8.2–5.6 ka) shows rapid rates of sea-level rise, expansion of estuaries, and a decrease in non-marine deposition with cool and dry climate. Phase D (5.6–4.2 ka) is a time of high rates of sea-level rise, expanding estuaries, and dry and cool climate; the Atlantic shoreline transgressed rapidly and there was little to no deposition on the uplands. Phase E (4.2–1.1 ka) is a time of lowering sea-level rise rates, Atlantic shorelines nearing their present position, and marine shoal deposition; widespread non-marine deposition resumed with a wetter and warmer climate. Phase F (1.1 ka-present) incorporates the Medieval Climate Anomaly and European settlement on the Delmarva Peninsula. Chronology of depositional phases and coastal changes related to sea-level rise is useful for archeological studies of human occupation in relation to climate change in eastern North America, and provides an important dataset for future regional and global sea-level reconstructions.





Author(s):  
Saleem-ul Huq ◽  
Ahsan U. Ahmed ◽  
Rob Koudstaal


Sign in / Sign up

Export Citation Format

Share Document