Acid Mine Drainage (AMD) and Acid Sulphate Soil monitoring using mineral and image spectroscopy: hyperspectral and multispectral approaches

Author(s):  
Veronika Kopackova-Strnadova

<p>Mining generates a number of significant environmental impacts, such as increased acidity of the soil/water environment, called mineral Acid Mine Drainage (AMD) being produced when sulphide-bearing material is exposed to oxygen and water.  Similar problem represent acid sulphate soils which are naturally occurring soils containing iron sulphide minerals (predominantly pyrite) or their oxidation products. Once these soils are drained, excavated or exposed to air by a lowering of the water table, the sulphides react with oxygen to form sulfuric acid. For both AMD and acid sulphate soils, there is a lack of historical and update records and, consequently, there is a need for new monitoring techniques allowing systematic analysis. A systematic study on how to map mineral patterns that characterize these acid environments using proximal remote sensing and imaging spectroscopy is presented. Furthermore, the upscaling to the spectral and spatial resolution of the satellite data such as WorldView2/3 and Sentinel-2 is discussed as well as an issue of transferability of the developed methods between the test sites which are characterized by different geographical conditions and environments.</p>

2004 ◽  
Vol 19 (12) ◽  
pp. 1953-1974 ◽  
Author(s):  
P.A. Weber ◽  
W.A. Stewart ◽  
W.M. Skinner ◽  
C.G. Weisener ◽  
J.E. Thomas ◽  
...  

2020 ◽  
Vol Special Issue (1) ◽  

Acid Mine Drainage (AMD) exists as a phenomenon that involves the release of acidic water and metal conjugates, in and around mines, degrading the surrounding water environment. A real-time mining effluent is treated using low-cost adsorption technology using Combined Vegetable Waste Carbon (CVWC) as sorbent. Batch sorption was reviewed to know the effect of process factors on the removal of Cadmium (Cd), Zinc (Zn), and Iron (Fe). A two-level CCD (Central Composite Design) with three factors was adopted in the optimization of process factors. Also, the same factors were considered to review the ANNs (Artificial Neural Networks), model. A comparative statistical analysis was performed for the experimental data based on RMSE and R2 values in both RSM (Response Surface Methodology) and ANNs models. This study revealed that the ANNs model was well fit compared to RSM and this would probably reduce the experimental trials thereby reducing cumbersome calculations.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexandra Šimonovičová ◽  
Jana Barteková ◽  
Ľubica Janovová ◽  
Alena Luptáková

This article analyzes the ability of micromycetes to accumulate Fe, Mg and Ca from acid mine drainage (AMD) at the locality Smolník. Four strains of the Aspergillus niger (An) species originating from various types of environment were used in the experiments: the An-G strain (the locality of Gabčíkovo, Eutric Fluvisol), the An-P strain (the locality of Pezinok-Kolársky vrch, mining region with elevated amounts of As and Sb), the An-N strain (the locality of Nováky, mining region with elevated amounts of As and S), the An-Š strain (Banská ŠtiavnicaŠobov, the locality impacted by an acid sulphate weathering and extremely low pH). In the most cases the accumulation of Mg was the highest in comparison to accumulation of Fe. Accumulation of Ca was very low. Among the tested microfungi, the highest accumulation was noted by the strain An-N 55 % of Mg and by the strain An-Š 54 % of Fe from the model solution of the elements (Fe [1.67 mg/L], Mg [2.35 mg/L] and Ca [1.14 mg/L]).


2014 ◽  
Vol 641-642 ◽  
pp. 416-419
Author(s):  
Jiang Qian Zhao ◽  
Hai Yan Ju ◽  
Peng Zhang ◽  
Shao Lin Liu

The acid mine drainage has the widest pollution range and biggest harm degree, which forms the potential corrosion hazards to sewage dams in mental mine. Based on the investigation and analysis of the acid mine drainage, the evolution law influence of physical and mechanical properties and leakage mechanism of sewage dam is revealed under the action of the acid mine drainage. In order to prolong its service life and insure the safe operation of the construction engineering, the program of concrete anti-seepage wall with coal fly ash is adopted, which can improve the impermeability and structure of concrete, enhancing the anti-seepage wall durability under acidic environment, providing the basis of scientific data and technical basis for acid mine water environment of basic construction.


Sign in / Sign up

Export Citation Format

Share Document