Comparative mycorrhizal fungal production and respiration of a neotropical rainforest versus a California mixed forest

Author(s):  
Michael Allen ◽  
Michael Taggart ◽  
George Rothbart ◽  
Thomas Harmon

<p>Mycorrhizae are a symbiosis between fungi and plants. We have learned about the complexity of mechanisms of interaction and interactions between the mycorrhizae and the local environment from over a century of laboratory observations experiments. Point observations and laboratory studies identify processes, but cannot delineate activity. Our goal is to use an in situ system to study mycorrhizal roots and fungi during hot moments, daily shifts, and seasonal change.</p><p>We integrated continuous in situ observation-sensor measurements using our Soil Ecosystem Observatories. As turnover rate estimates are related to sample frequency, individual scans using manual minirhizotrons (Bartz and Rhizosystems) and Rhizosystems Automated Minirhizotrons (32,000-3.01mm x 2.26mm 307,200 pixel images). Automated scans were collected up to 4x daily. Manual scans across multiple tubes in campaigns provided spatial variation. Images were organized into mosaics using RootView software, and roots and hyphae identified and length, width and biovolume determined using RootDetector <http://www.rhizosystems.com/>. Individual roots and hyphae were tracked using RootFly <https://cecas.clemson.edu/~stb/rootfly/>. Lifespans were determined using Mark-Recapture modeling and turnover calculated. With each minirhizotron tube, sensors were placed at 3 or 4 depths for temperature, moisture, CO<sub>2</sub> and O<sub>2</sub> at 5minute intervals.</p><p>Mycorrhizal fungi (MF) explore soil for nutrients and requiring C. Most C to the hyphae is respired (with a <sup>14</sup>C signal of autotrophic respiration), with the remaining divided into decomposing (heterotrophic respiration) and sequestered C pools.</p><p>Our first site is a mature neotropical rainforest, the La Selva Biological Station, Costa Rica. Trees predominantly form arbuscular mycorrhizae (AM). AMF fungi comprise 50% of total fungal mass (PLFA). Aboveground NPP-C was 750g/m<sup>2</sup>. Root standing crop C was 120g/m<sup>2</sup>, average lifespan 60days, =6 generations/y, = root NPP of 720g/m<sup>2</sup>/y. The AMF hyphal standing crop C was 12.5g/m<sup>2</sup>, average lifespan of 25 days, =14.7 generations/y, = AMF NPP of 183g/m<sup>2</sup>/y. With an NPP of 1,650g/m<sup>2</sup>/y, then AMF comprises 11% of NPP.</p><p>Soil respiration provides CO<sub>2</sub>, converting in water to HCO<sub>3</sub><sup>-</sup>, altering soil pH (Henry's Law). AMF respiration thereby increases P availability. If 10% of the AM fungal hyphae are live, then the hyphal respiration is 438g/m<sup>2</sup>/y of C, =38% of total soil respiration and 16% of site respiration.</p><p>Our second site is a mature California mixed forest, USA. Ectomycorrhizal (EM) trees predominate. Annual NPP-C was 200g/m<sup>2</sup>, and root NPP was 200g/m<sup>2</sup>. EMF NPP was 162.6g/m<sup>2</sup>, or 27% of the NPP. N, water, and temperature limit NPP. The seasonal signal was very high in this ecosystem. Peak standing crop of extramatrical EM hyphae was 19gC/m<sup>2</sup> in April. Total soil respiration in April was 0.26g/h, and extramatrical hyphae 0.029g/h, or 11% of the total soil respiration. Since P is less limiting, but N and water are, hyphae likely play a greater role in enzymatic activity and exploratory surface area.</p><p>In summary, different mycorrhizal fungi play different roles depending on ecosystem limiting factors. With global change, our challenge is to determine how an ecosystem will change and the extent and rapidity of mycorrhizal fungal change.</p>

Soil Research ◽  
2015 ◽  
Vol 53 (5) ◽  
pp. 531 ◽  
Author(s):  
Egidio Lardo ◽  
Assunta Maria Palese ◽  
Vitale Nuzzo ◽  
Cristos Xiloyannis ◽  
Giuseppe Celano

Total soil respiration (TSR) is the major component of the CO2 global flux. The knowledge of the temporal-spatial variability of TSR allows for a better interpretation of a critical component of global greenhouse gas flux measurements. The objective of the research was to evaluate the TSR dynamic over a long measurement period in a vineyard in the South of Italy. A static home-made automatic system was used to measure TSR for a three year period. A portable gas analyser (Li-Cor 6400-09) was used to study TSR spatial variability. A non-invasive geophysical technique (Electromagnetic Induction – EMI) was applied to search for a significant relationship between apparent soil electrical conductivity (ECa), the EMI signal and TSR. Long-term measurements of TSR enabled to study its temporal dynamics. CO2 rates ranged from 0.78 to 43.7 g CO2 m–2 day–1. TSR increased during spring and decreased by 45–50% during the mid-summer. The daily trend of TSR showed differences between the seasons studied reporting a clearly variation among TSR measured on row and inter-row positions. The supplemental irrigation significantly affected (P < 0.001) CO2 soil effluxes which showed a weekly mean increase of 300%. Significant inverse relationships were found by interpolating TSR values and ECa (coefficient of correlation ranging from –0.43 to –0.83 at P < 0.001). The spatialisation of TSR at field scale was performed using the linear regression between TSR values and EMI signals. TSR spatialisation gave a more detailed view of CO2 emissions distribution within the vineyard. EMI technique could be a useful tool to compute accurately the global CO2 emissions which are a complex and hard to measure component of the agrosystem carbon balance.


2020 ◽  
Author(s):  
Min Chen ◽  
Xiaoyang Chen ◽  
Zhiyong Hu ◽  
Tingyu Fan ◽  
Shiwen Zhang ◽  
...  

Abstract An accurate assessment of root respiration in mine reclaimed soil is important for effectively evaluating mining area ecosystem. This study investigated dynamic changes in root respiration and contribution of root respiration to total soil respiration (Rr/Rt ratio) during the non-growth season in mine reclaimed soil with different covering soil thicknesses. According to covering soil thicknesses, the study area was divided into four sites: 10-25 cm (site A), 25-45 cm (site B), 45-55 cm (site C) and 55-65 cm (site D). From November 2017 to April 2018 (except February in 2018), the soil respiration, root respiration, temperature at 5 cm, water content and root biomass were measured. The results showed that soil temperature and root respiration exhibited similar diurnal and monthly variations. The root respiration was strongly influenced by soil temperature during the non-growing season, which showed an exponential and positive relationship with soil temperature (P<0.001). The root respiration varied with the covering soil thickness and was the greatest with the covering soil thickness at 25–45 cm. The Rr/Rt ratio also exhibited monthly variations. During the non-growth season, the mean value of the Rr/Rt ratio were 51.15% in mine reclaimed soil. The study indicated that root respiration was the primary source of soil respiration and important to estimate the potential of emission of soil CO 2 at regional scale in mine reclaimed soil.


2020 ◽  
Author(s):  
Min Chen ◽  
Xiaoyang Chen ◽  
Zhiyong Hu ◽  
Tingyu Fan ◽  
Shiwen Zhang ◽  
...  

Abstract An accurate assessment of root respiration in mine reclaimed soil is important for effectively evaluating mining area ecosystem. This study investigated dynamic changes in root respiration and contribution of root respiration to total soil respiration (Rr/Rt ratio) during the non-growing season in mine reclaimed soil with different covering soil thicknesses. According to covering soil thicknesses, the study area was divided into four sites: 10-25 cm (site A), 25-45 cm (site B), 45-55 cm (site C) and 55-65 cm (site D). From November 2017 to April 2018 (except February in 2018), the soil respiration, root respiration, temperature at 5 cm, water content and root biomass were measured. The results showed that soil temperature and root respiration exhibited similar diurnal and monthly variations. The root respiration was strongly influenced by soil temperature during the non-growing season, which showed an exponential and positive relationship with soil temperature (P<0.001). The root respiration varied with the covering soil thickness and was the greatest with the covering soil thickness at 25–45 cm. The Rr/Rt ratio also exhibited monthly variations. During the non-growing season, the mean value of the Rr/Rt ratio was 51.15% in mine reclaimed soil. The study indicated that root respiration was the primary source of soil respiration and important to estimate the potential emission of soil CO2 at regional scale in mine reclaimed soil.


Soil Research ◽  
2020 ◽  
Vol 58 (6) ◽  
pp. 592
Author(s):  
S. Neogi ◽  
P. K. Dash ◽  
P. Bhattacharyya ◽  
S. R. Padhy ◽  
K. S. Roy ◽  
...  

Soil respiration contributes significantly to ecosystem respiration and is vital in the context of climate change research. In a season-long experiment we studied total soil respiration (TSR) and its partitioning into root respiration, rhizospheric respiration (RhR) and basal-soil respiration in four contrasting rice production systems: irrigated lowland (IL) (cv. Gayatri); organic nutrient managed irrigated lowland (OIL) (cv. Geetanjali); system of rice intensification (SRI) (cv. Swarna); and aerobic rice system (Aerobic) (cv. APO). We considered TSR to be the sum of root respiration, RhR and basal-soil respiration. Irrespective of the rice production system, TSR was higher at panicle initiation stage. Considering all four systems, the RhR contributed the most (59–83%) and basal-soil respiration the least (10–19%) to the TSR. Mean RhR showed the trend of Aerobic &gt; SRI &gt; IL &gt; OIL across the growing seasons and indicated higher rhizosphere activities in the aerobic system. Mean root respiration showed a trend of IL &gt; OIL &gt; SRI &gt; Aerobic and mean basal-soil respiration had SRI &gt; IL &gt; OIL &gt; Aerobic. Soil labile carbon pools and heterotrophic populations were higher in OIL and dehydrogenase activity was higher in SRI. Microbial biomass carbon, readily mineralisable carbon, dehydrogenase activity and the heterotroph population showed positive correlations with RhR. Hence, regulation of RhR is crucial and can be achieved through rhizosphere modifications linked with labile carbon pools and soil enzymatic activities by plant physiological modification or through soil carbon stabilisation.


Sign in / Sign up

Export Citation Format

Share Document