seasonal pattern
Recently Published Documents


TOTAL DOCUMENTS

1568
(FIVE YEARS 387)

H-INDEX

63
(FIVE YEARS 7)

Author(s):  
Baogui Liu ◽  
Jiayi Wu ◽  
Yang Hu ◽  
Guoxiang Wang ◽  
Yuwei Chen

Irregular hydrological events, according to a classic plankton ecology group (PEG) study, can generate major deviations from the standard PEG model. However, little is known about the function of hydrological factors in influencing the seasonal dynamics of plankton. We used multivariate and Partial Least Squares Path Modeling to analyze the seasonal variation in crustacean zooplankton and related environmental factors from winter 2009 to winter 2016 in Lake Poyang, the largest freshwater lake in China. We found a distinct seasonal pattern in zooplankton development, which deviated, in part, from the PEG model, as we found indications of (1) a weaker degree of food limitation in winter and spring, likely due to high concentrations of allochthonous sources caused by decomposition of seasonally flooded hygrophytes, also affecting sediment dynamics; (2) a peak in crustacean zooplankton biomass in summer when the water level was high (and predation was lower), and where horizontal transport of zooplankton from the littoral zone to the pelagic was possibleand (3) a higher predation pressure in autumn, likely due to a shrinking water volume that left the fish concentrated in less water. The majority of these differences can be attributed to the direct or indirect impacts of physical factor variation.


2022 ◽  
Vol 43 (1) ◽  
pp. 211-228
Author(s):  
Manoel Eduardo Rozalino Santos ◽  
◽  
Angélica Nunes Carvalho ◽  
Adenilson José Paiva ◽  
Bruno Humberto Rezende Carvalho ◽  
...  

Based on the hypothesis that climate and fertilizers influence the proportion of tiller age categories in the canopy and, consequently, in herbage accumulation, the objective of this study was to determine the population density and the contribution of tiller age categories for herbage accumulation of Urochloa brizantha cv. Marandu during the year and in response to phosphate and nitrogen fertilization. The treatments consisted of two fertilization strategies: low and high fertilization and three tiller ages (young, mature and old), evaluated at four times of the year: winter, early and late spring, and summer. The total number of tillers and the proportion of young tillers were higher in late spring and summer. The growth and herbage accumulation rates showed a typical seasonal pattern and were higher in the canopy under high fertilization. Old tillers contributed more to control the total stem growth rate, as well as the canopy senescence rate. The highest percentage of young tillers is related to the high herbage accumulation in the Marandu palisadegrass canopy.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Anita Devi ◽  
Syed Ainul Hussain ◽  
Monika Sharma ◽  
Govindan Veeraswami Gopi ◽  
Ruchi Badola

AbstractJarman–Bell (1974) hypothesized that in the dry savanna of Africa, small-bodied herbivores tend to browse more on forage with high protein and low fibre content. This implies browsing on high nutritive forage by meso-herbivores, and grazing and mixed feeding on coarse forage by mega-herbivores. We tested this hypothesis in the riverine alluvial grasslands of the Kaziranga National Park (KNP), where seasonal flood and fire play an important role in shaping the vegetation structure. We analyzed the feeding habits and quality of major forage species consumed by three mega-herbivores, viz. greater one-horned rhino, Asian elephant, and Asiatic wild buffalo, and three meso-herbivores, viz. swamp deer, hog deer, and sambar. We found that both mega and meso-herbivores were grazers and mixed feeders. Overall, 25 forage plants constituted more than 70% of their diet. Among monocots, family Poaceae with Saccharum spp. (contributing > 9% of the diet), and, among dicots, family Rhamnaceae with Ziziphus jujuba (contributing > 4% of the diet) fulfilled the dietary needs. In the dry season, the concentration of crude protein, neutral detergent fibre, calcium, sodium, and phosphorous varied significantly between monocots and dicots, whereas only calcium and sodium concentrations varied significantly in the wet season. Dicots were found to be more nutritious throughout the year. Compared to the dry season, the monocots, viz. Alpinia nigra, Carex vesicaria, Cynodon dactylon, Echinochloa crus-galli, Hemarthria compressa, Imperata cylindrica, and Saccharum spp., with their significantly high crude protein, were more nutritious during the wet season. Possibly due to the availability of higher quality monocots in the wet season, both mega and meso-herbivores consume it in high proportion. We concluded that the Jarman–Bell principle does not apply to riverine alluvial grasslands as body size did not explain the interspecific dietary patterns of the mega and meso-herbivores. This can be attributed to seasonal floods, habitat and forage availability, predation risk, and management practices such as controlled burning of the grasslands. The ongoing succession and invasion processes, anthropogenic pressures, and lack of grassland conservation policy are expected to affect the availability of the principal forage and suitable habitat of large herbivores in the Brahmaputra floodplains, which necessitates wet grassland-based management interventions for the continued co-existence of large herbivores in such habitats.


Aerobiologia ◽  
2022 ◽  
Author(s):  
Estefanía Sánchez Reyes ◽  
Alicia Córdoba Jara ◽  
José Sánchez Sánchez ◽  
Pedro Mardones Precht

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 77
Author(s):  
Alexandre L. Correia ◽  
Marina M. Mendonça ◽  
Thiago F. Nobrega Nobrega ◽  
Andre C. Pugliesi ◽  
Micael A. Cecchini

Geostationary satellites can retrieve the cloud droplet effective radius (re) but suffer biases from cloud inhomogeneities, internal retrieval nonlinearities, and 3-D scattering/shadowing from neighboring clouds, among others. A 1-D retrieval method was applied to Geostationary Operational Environmental Satellite 13 (GOES-13) imagery, over large areas in South America (+5∘ to −30∘ N5∘ N–30∘ S; −20∘ to −70∘E20∘–70∘ W), the Southeast Pacific (+5∘ to −30∘ N5∘ N–30∘ S; −70∘ to −120∘E70∘–120∘ W), and the Amazon (+2∘ to −7∘ N2∘ N–7∘ S; −54∘ to −73∘E54∘–73∘ W), for four months in each year from 2014–2017. Results were regressedcompared against in situ aircraft measurements and the Moderate Resolution Imaging Spectroradiometer cloud product for Terra and Aqua satellites. Monthly regression parameters approximately followed a seasonal pattern. With up to 108,009 of matchups, slope, intercept, and correlation for Terra (Aqua) ranged from about 0.71 to 1.17, −2.8 to 2.5 μm, and 0.61 to 0.91 (0.54 to 0.78, −1.5 to 1.8 μm, 0.63 to 0.89), respectively. We identified evidence for re overestimation (underestimation) correlated with shadowing (enhanced reflectance) in the forward (backscattering) hemisphere, and limitations to illumination/ and viewing configurations accessible by GOES-13, depending on the time of day and season. A proposition is hypothesized to ameliorate 3-D biases by studying relative illumination and cloud spatial inhomogeneity.


2021 ◽  
Vol 8 ◽  
Author(s):  
Anke Kügler ◽  
Marc O. Lammers ◽  
Eden J. Zang ◽  
Adam A. Pack

Passive acoustic monitoring (PAM) with autonomous bottom-moored recorders is widely used to study cetacean occurrence, distribution and behaviors, as it is less affected by factors that limit other observation methods (e.g., vessel, land and aerial-based surveys) such as inclement weather, sighting conditions, or remoteness of study sites. During the winter months in Hawai‘i, humpback whale male song chorusing becomes the predominant contributor to the local soundscape and previous studies showed a strong seasonal pattern, suggesting a correlation with relative whale abundance. However, the relationship between chorusing levels and abundance, including non-singing whales, is still poorly understood. To investigate how accurately acoustic monitoring of singing humpback whales tracks their abundance, and therefore is a viable tool for studying whale ecology and population trends, we collected long-term PAM data from three bottom-moored Ecological Acoustic Recorders off west Maui, Hawaii during the winter and spring months of 2016–2021. We calculated daily medians of root-mean-square sound pressure levels (RMS SPL) of the low frequency acoustic energy (0–1.5 kHz) as a measure of cumulative chorusing intensity. In addition, between December and April we conducted a total of 26 vessel-based line-transect surveys during the 2018/19 through 2020/21 seasons and weekly visual surveys (n = 74) from a land-based station between 2016 and 2020, in which the location of sighted whale pods was determined with a theodolite. Combining the visual and acoustic data, we found a strong positive second-order polynomial correlation between SPLs and abundance (land: 0.72 ≤ R2 ≤ 0.75, vessel: 0.81 ≤ R2 ≤ 0.85 for three different PAM locations; Generalized Linear Model: pland ≪ 0.001, pvessel ≪ 0.001) that was independent from recording location (pland = 0.23, pvessel = 0.9880). Our findings demonstrate that PAM is a relatively low-cost, robust complement and alternative for studying and monitoring humpback whales in their breeding grounds that is able to capture small-scale fluctuations during the season and can inform managers about population trends in a timely manner. It also has the potential to be adapted for use in other regions that have previously presented challenges due to their remoteness or other limitations for conducting traditional surveys.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 23
Author(s):  
Vesna Flander-Putrle ◽  
Janja Francé ◽  
Patricija Mozetič

In coastal seas, a variety of environmental variables characterise the average annual pattern of the physico-chemical environment and influence the temporal and spatial variations of phytoplankton communities. The aim of this study was to track the annual and interannual variability of phytoplankton biomass in different size classes in the Gulf of Trieste (Adriatic Sea) using phytoplankton pigments. The seasonal pattern of phytoplankton size classes showed a co-dominance of the nano and micro fractions during the spring peak and a predominance of the latter during the autumn peak. The highest picoplankton values occurred during the periods with the lowest total phytoplankton biomass, with chlorophytes dominating during the colder months and cyanobacteria during the summer. The highest number of significant correlations was found between phytoplankton taxa and size classes and temperature, nitrate and nitrite. The most obvious trend observed over the time series was an increase in picoplankton in all water layers, with the most significant trend in the bottom layer. Nano- and microplankton showed greater variation in biomass, with a decrease in nanoplankton biomass in 2011 and 2012 and negative trend in microplankton biomass in the bottom layer. These results suggest that changes in trophic relationships in the pelagic food web may also have implications for biogeochemical processes in the coastal sea.


Author(s):  
Stefan Zammit ◽  
Kevin Cassar

Highlights Abstract Introduction: Arteriovenous prosthetic grafts are susceptible to recurrent thrombotic occlusions mainly due to venous outflow disease secondary to neointimal hyperplasia. Maintenance of vascular access for dialysis is a perpetual challenge for both patients and health care systems. In regions with hotter climates, there is a clinical impression that episodes of prosthetic arteriovenous vascular access graft thrombosis are more frequent during hot dry summers secondary to dehydration and increased blood viscosity. Seasonality of thrombotic events has been observed in multiple vascular beds. However, a seasonal pattern or any association of arteriovenous graft thrombosis with temperature and relative humidity levels has never been fully demonstrated. Methods: Data were collected prospectively from January 2014 until December 2020 but analyzed retrospectively. In this 7-year timeframe, 289 episodes of arteriovenous graft thrombosis were identified from 142 grafts fashioned. Results: No monthly variation (P = 0.35) or seasonal variation (P = 0.91) was identified. No statistically significant correlation between episodes of thrombosis and mean monthly temperature and mean relative humidity was noted. Conclusion: No evidence was identified to support this theory. However, multiple issues with assessments of events must be conceded. Graft thrombosis is multifactorial in nature, and venous outflow disease contributes toward a significant number of these events. Within our local cohort, a low primary patency rate was identified, which further contributes to graft interventions. Relatively small numbers were recruited, and therefore, potential correlations could have been missed.


2021 ◽  
Vol 21 (23) ◽  
pp. 18101-18121
Author(s):  
Sabour Baray ◽  
Daniel J. Jacob ◽  
Joannes D. Maasakkers ◽  
Jian-Xiong Sheng ◽  
Melissa P. Sulprizio ◽  
...  

Abstract. Methane emissions in Canada have both anthropogenic and natural sources. Anthropogenic emissions are estimated to be 4.1 Tg a−1 from 2010–2015 in the National Inventory Report submitted to the United Nation's Framework Convention on Climate Change (UNFCCC). Natural emissions, which are mostly due to boreal wetlands, are the largest methane source in Canada and highly uncertain, on the order of ∼ 20 Tg a−1 in biosphere process models. Aircraft studies over the last several years have provided “snapshot” emissions that conflict with inventory estimates. Here we use surface data from the Environment and Climate Change Canada (ECCC) in situ network and space-borne data from the Greenhouse Gases Observing Satellite (GOSAT) to determine 2010–2015 anthropogenic and natural methane emissions in Canada in a Bayesian inverse modelling framework. We use GEOS-Chem to simulate anthropogenic emissions comparable to the National Inventory and wetlands emissions using an ensemble of WetCHARTS v1.0 scenarios in addition to other minor natural sources. We conduct a comparative analysis of the monthly natural emissions and yearly anthropogenic emissions optimized by surface and satellite data independently. Mean 2010–2015 posterior emissions using ECCC surface data are 6.0 ± 0.4 Tg a−1 for total anthropogenic and 11.6 ± 1.2 Tg a−1 for total natural emissions. These results agree with our posterior emissions of 6.5 ± 0.7 Tg a−1 for total anthropogenic and 11.7 ± 1.2 Tg a−1 for total natural emissions using GOSAT data. The seasonal pattern of posterior natural emissions using either dataset shows slower to start emissions in the spring and a less intense peak in the summer compared to the mean of WetCHARTS scenarios. We combine ECCC and GOSAT data to characterize limitations towards sectoral and provincial-level inversions. We estimate energy + agriculture emissions to be 5.1 ± 1.0 Tg a−1, which is 59 % higher than the national inventory. We attribute 39 % higher anthropogenic emissions to Western Canada than the prior. Natural emissions are lower across Canada. Inversion results are verified against independent aircraft data and surface data, which show better agreement with posterior emissions. This study shows a readjustment of the Canadian methane budget is necessary to better match atmospheric observations with lower natural emissions partially offset by higher anthropogenic emissions.


Sign in / Sign up

Export Citation Format

Share Document