harvard forest
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 7)

H-INDEX

27
(FIVE YEARS 1)

2021 ◽  
Vol 13 (20) ◽  
pp. 4126
Author(s):  
Yang Li ◽  
Ziti Jiao ◽  
Kaiguang Zhao ◽  
Yadong Dong ◽  
Yuyu Zhou ◽  
...  

Vegetation indices are widely used to derive land surface phenology (LSP). However, due to inconsistent illumination geometries, reflectance varies with solar zenith angles (SZA), which in turn affects the vegetation indices, and thus the derived LSP. To examine the SZA effect on LSP, the MODIS bidirectional reflectance distribution function (BRDF) product and a BRDF model were employed to derive LSPs under several constant SZAs (i.e., 0°, 15°, 30°, 45°, and 60°) in the Harvard Forest, Massachusetts, USA. The LSPs derived under varying SZAs from the MODIS nadir BRDF-adjusted reflectance (NBAR) and MODIS vegetation index products were used as baselines. The results show that with increasing SZA, NDVI increases but EVI decreases. The magnitude of SZA-induced NDVI/EVI changes suggests that EVI is more sensitive to varying SZAs than NDVI. NDVI and EVI are comparable in deriving the start of season (SOS), but EVI is more accurate when deriving the end of season (EOS). Specifically, NDVI/EVI-derived SOSs are relatively close to those derived from ground measurements, with an absolute mean difference of 8.01 days for NDVI-derived SOSs and 9.07 days for EVI-derived SOSs over ten years. However, a considerable lag exists for EOSs derived from vegetation indices, especially from the NDVI time series, with an absolute mean difference of 14.67 days relative to that derived from ground measurements. The SOSs derived from NDVI time series are generally earlier, while those from EVI time series are delayed. In contrast, the EOSs derived from NDVI time series are delayed; those derived from the simulated EVI time series under a fixed illumination geometry are also delayed, but those derived from the products with varying illumination geometries (i.e., MODIS NBAR product and MODIS vegetation index product) are advanced. LSPs derived from varying illumination geometries could lead to a difference spanning from a few days to a month in this case study, which highlights the importance of normalizing the illumination geometry when deriving LSP from NDVI/EVI time series.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 163 ◽  
Author(s):  
Nahuel Bautista ◽  
Bruno D. V. Marino ◽  
J. William Munger

Forest carbon sequestration offset protocols have been employed for more than 20 years with limited success in slowing deforestation and increasing forest carbon trading volume. Direct measurement of forest carbon flux improves quantification for trading but has not been applied to forest carbon research projects with more than 600 site installations worldwide. In this study, we apply carbon accounting methods, scaling hours to decades to 28-years of scientific CO2 eddy covariance data for the Harvard Forest (US-Ha1), located in central Massachusetts, USA and establishing commercial carbon trading protocols and applications for similar sites. We illustrate and explain transactions of high-frequency direct measurement for CO2 net ecosystem exchange (NEE, gC m−2 year−1) that track and monetize ecosystem carbon dynamics in contrast to approaches that rely on forest mensuration and growth models. NEE, based on eddy covariance methodology, quantifies loss of CO2 by ecosystem respiration accounted for as an unavoidable debit to net carbon sequestration. Retrospective analysis of the US-Ha1 NEE times series including carbon pricing, interval analysis, and ton-year exit accounting and revenue scenarios inform entrepreneur, investor, and landowner forest carbon commercialization strategies. CO2 efflux accounts for ~45% of the US-Ha1 NEE, an error of ~466% if excluded; however, the decades-old coupled human and natural system remains a financially viable net carbon sink. We introduce isoflux NEE for t13C16O2 and t12C18O16O to directly partition and quantify daytime ecosystem respiration and photosynthesis, creating new soil carbon commerce applications and derivative products in contrast to undifferentiated bulk soil carbon pool approaches. Eddy covariance NEE methods harmonize and standardize carbon commerce across diverse forest applications including, a New England, USA regional eddy covariance network, the Paris Agreement, and related climate mitigation platforms.


2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Hannah E. Marx ◽  
Stacy A. Jorgensen ◽  
Eldridge Wisely ◽  
Zheng Li ◽  
Katrina M. Dlugosch ◽  
...  

2020 ◽  
Vol 90 (4) ◽  
Author(s):  
Adrien C. Finzi ◽  
Marc‐André Giasson ◽  
Audrey A. Barker Plotkin ◽  
John D. Aber ◽  
Emery R. Boose ◽  
...  

Author(s):  
Hannah E. Marx ◽  
Stacy A. Jorgensen ◽  
Eldridge Wisely ◽  
Zheng Li ◽  
Katrina M. Dlugosch ◽  
...  

ABSTRACTPremise of the study: Large scale projects such as NEON are collecting ecological data on entire biomes to track and understand plant responses to climate change. NEON provides an opportunity for researchers to launch community transcriptomic projects that ask integrative questions in ecology and evolution. We conducted a pilot study to investigate the challenges of collecting RNA-seq data from phylogenetically diverse NEON plant communities, including species with diploid and polyploid genomes.Methods: We used Illumina NextSeq to generate >20 Gb of RNA-seq for each of 24 vascular plant species representing 12 genera and 9 families at the Harvard Forest NEON site. Each species was sampled twice, in July and August 2016. We used Transrate, BUSCO, and GO analyses to assess transcriptome quality and content.Results: We obtained nearly 650 Gb of RNA-seq data that assembled into more than 755,000 translated protein sequences across the 24 species. We observed only modest differences in assembly quality scores across a range of k-mer values. On average, transcriptomes contained hits to >70% of loci in the BUSCO database. We found no significant difference in the number of assembled and annotated genes between diploid and polyploid transcriptomes.Discussion: Our resource provides new RNA-seq datasets for 24 species of vascular plants in Harvard Forest. Challenges associated with this type of study included recovery of high quality RNA from diverse species and access to NEON sites for genomic sampling. Overcoming these challenges offers clear opportunities for large scale studies at the intersection of ecology and genomics.


2019 ◽  
Vol 124 (3) ◽  
pp. 461-478
Author(s):  
Gidon Eshel ◽  
Archana Dayalu ◽  
Steven C. Wofsy ◽  
J. William Munger ◽  
Eli Tziperman

Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 154 ◽  
Author(s):  
Ahmed Siddig ◽  
Alison Ochs ◽  
Aaron Ellison

Long-term ecological research (LTER) and monitoring programs accrue invaluable ecological data that inform policy and improve decisions that enable adaptation to and mitigation of environmental changes. There is great interest in identifying ecological indicators that can be monitored easily and effectively to yield reliable data about environmental changes in forested ecosystems. However, the selection, use, and validity of ecological indicators to monitor in LTER programs remain challenging tasks for ecologists and conservation biologists. Across the eastern United States of America, the foundation tree species eastern hemlock (Tsuga canadensis (L.) Carrière) is declining and dying from irruptions of a non-native insect, the hemlock woolly adelgid (Adelges tsugae Annand). We use data from the Harvard Forest LTER site’s Hemlock Removal Experiment together with information from other eastern US LTER sites to show that plethodontid salamanders can be reliable indicators of ongoing ecological changes in forested ecosystems in the eastern USA. These salamanders are abundant, they have a history of demographic stability, are both predators and prey, and can be sampled and monitored simply and cost-effectively. At the Harvard Forest LTER, red-backed salamanders (Plethodon cinereus Green) were strong indicators of intact forests dominated by eastern hemlock (Tsuga canadensis); their high site fidelity and habitat specificity yielded an indicator value (robust Dufrêne and Legendre’s “IndVal”) for this species of 0.99. Eastern red-spotted newts (Notopthalmus viridescens viridescens Rafinesque) were better indicators of nearby stands made up of young, mixed hardwood species, such as those which replace hemlock stands following adelgid infestation. At the Hubbard Brook and Coweeta LTER sites, plethodontid salamanders were associated with intact riparian habitats, which may also be dominated by eastern hemlock. We conclude that plethodontid salamanders satisfy most criteria for reliable ecological indicators of environmental changes in eastern US forests.


2018 ◽  
Vol 15 (17) ◽  
pp. 5395-5413 ◽  
Author(s):  
Jason A. Ducker ◽  
Christopher D. Holmes ◽  
Trevor F. Keenan ◽  
Silvano Fares ◽  
Allen H. Goldstein ◽  
...  

Abstract. We develop and evaluate a method to estimate O3 deposition and stomatal O3 uptake across networks of eddy covariance flux tower sites where O3 concentrations and O3 fluxes have not been measured. The method combines standard micrometeorological flux measurements, which constrain O3 deposition velocity and stomatal conductance, with a gridded dataset of observed surface O3 concentrations. Measurement errors are propagated through all calculations to quantify O3 flux uncertainties. We evaluate the method at three sites with O3 flux measurements: Harvard Forest, Blodgett Forest, and Hyytiälä Forest. The method reproduces 83 % or more of the variability in daily stomatal uptake at these sites with modest mean bias (21 % or less). At least 95 % of daily average values agree with measurements within a factor of 2 and, according to the error analysis, the residual differences from measured O3 fluxes are consistent with the uncertainty in the underlying measurements. The product, called synthetic O3 flux or SynFlux, includes 43 FLUXNET sites in the United States and 60 sites in Europe, totaling 926 site years of data. This dataset, which is now public, dramatically expands the number and types of sites where O3 fluxes can be used for ecosystem impact studies and evaluation of air quality and climate models. Across these sites, the mean stomatal conductance and O3 deposition velocity is 0.03–1.0 cm s−1. The stomatal O3 flux during the growing season (typically April–September) is 0.5–11.0 nmol O3 m−2 s−1 with a mean of 4.5 nmol O3 m−2 s−1 and the largest fluxes generally occur where stomatal conductance is high, rather than where O3 concentrations are high. The conductance differences across sites can be explained by atmospheric humidity, soil moisture, vegetation type, irrigation, and land management. These stomatal fluxes suggest that ambient O3 degrades biomass production and CO2 sequestration by 20 %–24 % at crop sites, 6 %–29 % at deciduous broadleaf forests, and 4 %–20 % at evergreen needleleaf forests in the United States and Europe.


Sign in / Sign up

Export Citation Format

Share Document