Insights into the petrogenesis and petrophysics of vein magmatism in the Lamas de Olo region, northern Portugal

Author(s):  
António Oliveira ◽  
Helena Martins ◽  
Helena Sant'Ovaia

<p>The onset of the final stages of the Variscan orogeny in the Central Iberian Zone (CIZ) is marked by the emplacement of several late to post-tectonic granite melts. The following transition into an extensional regime is associated with subvolcanic magmatism, commonly represented by veins and masses of rhyolitic porphyries, dolerites, and lamprophyres. In Portugal and Spain, these hypabyssal lithologies are fairly abundant.</p><p>The Lamas de Olo region of northern Portugal is located about 100 km to the ENE of Porto. Here, the most significant geological body is the composite, post-tectonic Lamas de Olo pluton. Several fracture systems, whose average trends are NNW-SSE, NNE-SSW, and WSW-ENE, cut through this pluton. The composing facies are known as the Lamas de Olo (LO), Alto dos Cabeços (AC), and Barragem (BA) granites. To the east of the pluton, there are two veins: a microgranite and a lamprophyre. While the microgranite is E-W trending, the lamprophyre is N53°E trending.</p><p>The felsic vein is rich in quartz and K-feldspar, which are frequently intergrown in granophyric texture, while muscovite, apatite, biotite, and ilmenite are accessories. The feldspars are intensely kaolinized and muscovitized, and biotite is mostly altered in chlorite and brookite/anatase. Compositionally, the microgranite is identical to the BA facies. It is subalkaline, highly felsic peraluminous, and associated with post-orogenic to transitional settings.</p><p>Biotite, K-feldspar, plagioclase, pyroxene, and amphibole are the main minerals composing the lamprophyre. Quartz, hematite, goethite, apatite, monazite, zircon, and magnetite are accessories. Pyroxene uralitization, amphibole biotitization, and biotite chloritization evidence the altered state of this vein. Geochemically, the pluton and lamprophyre have nothing in common. This lithology is metaluminous to weakly peraluminous, shoshonitic, alkaline, and associated with within-plate and post-collisional uplift settings. Zircon SHRIMP U-Pb analyses yield a concordia age of 295 ± 2 Ma (MSWD = 2.1) and the Nd isotopic signature is εNd = -0.05.</p><p>Considering the geochemistry, the microgranite is more evolved than the LO and AC granites. Most likely, it derived from a plagioclase-rich, crustal source, which was uncontaminated by mantle or young crustal materials. The microgranite melt was presumably derived from the same source that generated the BA granite, and its emplacement was controlled by WSW-ENE trending fractures. The mineral assemblage is mostly diamagnetic, and the post-magmatic alterations were mainly triggered by meteoric fluids, thus generating an ambiguous magnetic fabric. The microgranite is also associated with a subhorizontal magma flow and shallow roots. On the other hand, the lamprophyre was presumably derived from the lithospheric mantle and strongly contaminated by lower crustal materials. Geochemically, the lamprophyre is unrelated to the pluton, but structurally the NNE-SSW trending fractures probably influenced its emplacement. The petrophysical results point out a ferromagnetic behavior and influence of hydrothermal fluids. Based on our results, the lamprophyre was seemingly generated and emplaced after the microgranite.</p><p>This work was supported by the Portuguese Foundation for Science and Technology (FCT), through the project reference UIDB/04683/2020 and ICT (Institute of Earth Sciences). The main author is also financially supported by FCT through an individual Ph.D. grant (reference SFRH/BD/138818/2018).</p>

Author(s):  
H. Sant'Ovaia ◽  
J. L. Bouchez ◽  
F. Noronha ◽  
D. Leblanc ◽  
J. L. Vigneresse

The Vila Pouca de Aguiar granite pluton, emplaced during the latest event of the Variscan orogeny of northern Portugal, is here subjected to a detailed study that combines magnetic fabric measurements and gravity modelling of its shape at depth. This laccolith, less than 1 km in thickness over ≈60% of its outcrop area, appears to be fed from its northern area, through narrow conduits, up to 5 km deep, belonging to a set of Y-shaped valleys that almost perfectly correspond to the local Régua–Verin fault-system identified in the geological maps. A normal petrographical zonation, already identified geologically, appears to be rather progressive, although a gradient in magnetic suceptibility magnitude in-between the two main magma types is evidenced. It is suggested that the first to be emplaced and the least evolved granite type (Vila Pouca de Aguiar Granite) upwelled from the local, NE-trending fault-zone, acting as a dyke, and formed a thin sill where NE-directed magma flow was dominant, at least close to the floor. The more evolved granite type (Pedras Salgadas Granite), located just above the main feeder zone, and deeply rooted at the intersection beween underlying faults, is at the centre of a remarkably regular concentric distribution of the foliation trajectories. They may reflect the late doming of the laccolith's northern part, coeval with a slight E-W extension of the inflating magma reservoir, as marked by the E-W-trending lineations. Along with ubiquitous magmatic to near-magmatic microstructures and particularly low anisotropy magnitudes, such patterns can be entirely explained by magma movement within its inflating reservoir. This composite laccolith, during emplacement of which no interference with the regional strain pattern can be recorded, is therefore considered as typical of post-tectonic emplacement.


2020 ◽  
Author(s):  
Anton Latyshev ◽  
Victor Chmerev ◽  
Victor Zaitsev

<p>Products of the Permian-Triassic magmatic activity in the Kotuy river valley consist of two contrasting in composition groups: 1) tholeiitic basalts, similar to the main volume of the Siberian Traps; 2) alkaline-ultramafic rocks which are extremely rare in other regions of the Siberian platform. Alkaline lavas and tuffs in the Kotuy river valley are exposed only in limited area (Arydzhangsky and Khardakhsky formations), however, multiphase circular plutons (Kugda, Odikhincha) and swarms of radial and parallel dikes marks the essentially wider territory of the manifestation of alkaline magmatic activity.</p><p>Here we present the preliminary results of the investigation of AMS in the dike complex of alkaline lamprophyres from the Kotuy river valley. The majority of dikes demonstrate I-type of the magnetic fabric, when the medium axes K2 of AMS ellipsoid is orthogonal to the contact of intrusion. In dikes where the minimal axis K3 is subvertical and maximal axis K1 is flat, we interpret this magnetic fabric as a result of cooling of the static magma column after the emplacement in the setting of horizontal extension (Park et al., 1988; Raposo and Ernesto, 1995). Also, N-type and R-type of magnetic fabric were identified as well. In some intrusions, the orientation of the axes of AMS ellipsoid changes from the contact zones to the inner part if intrusion. In this case, we used data from the contact zones for the magma flow reconstruction.</p><p>Analysis of the maximal axis K1 orientation in different dikes showed that in majority of bodies it shallowly plunges to the west. This corresponds to the lateral magma flow from west to east during the emplacement. Consequently, formation of the studied dikes is not directly related to Kugda pluton, which is located 8 km eastward. The emplacement of dikes occurred from the magmatic center located westward from the Kotuy river valley and is not associated with any known large massifs. Petrographic similarity of the studied dikes to the lavas of Arydzhangsky formation allows us to suggest that they are coeval. This implies the wider area of manifestation of the Arydzhangsky magmatic stage.</p><p>This work was supported by RFBR (projects 18-35-20058, 18-05-70094, 17-05-01121 and 20-05-00573).</p>


2011 ◽  
Vol 24 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Jiří Žák ◽  
Igor Soejono ◽  
Vojtěch Janoušek ◽  
Zdeněk Venera

AbstractAt Pitt Point, the east coast of Graham Land (Antarctic Peninsula), the Early to Middle Jurassic (Toarcian–Aalenian) rhyolite dykes form two coevally emplaced NNE–SSW and E–W trending sets. The nearly perpendicular dyke sets define a large-scale chocolate-tablet structure, implying biaxial principal extension in the WNW–ESE and N–S directions. Along the nearby north-eastern slope of Mount Reece, the WNW–ESE set locally dominates suggesting variations in the direction and amount of extension. Magnetic fabric in the dykes, revealed using the anisotropy of magnetic susceptibility (AMS) method, indicates dip-parallel to dip-oblique (?upward) magma flow. The dykes are interpreted as representing sub-volcanic feeder zones above a felsic magma source. The dyke emplacement was synchronous with the initial stages of the Weddell Sea opening during Gondwana break-up, but it remains unclear whether it was driven by regional stress field, local stress field above a larger plutonic body, or by an interaction of both.


2008 ◽  
Vol 170 (3-4) ◽  
pp. 247-261 ◽  
Author(s):  
C. Aubourg ◽  
G. Tshoso ◽  
B. Le Gall ◽  
H. Bertrand ◽  
J.-J. Tiercelin ◽  
...  

2020 ◽  
Vol 191 ◽  
pp. 34 ◽  
Author(s):  
Félix Djerossem ◽  
Julien Berger ◽  
Olivier Vanderhaeghe ◽  
Moussa Isseini ◽  
Jérôme Ganne ◽  
...  

This paper presents new petrological, geochemical, isotopic (Nd) and geochronological data on magmatic rocks from the poorly known southern Ouaddaï massif, located at the southern edge of the so-called Saharan metacraton. This area is made of greenschist to amphibolite facies metasediments intruded by large pre- to syn-tectonic batholiths of leucogranites and an association of monzonite, granodiorite and biotite granite forming a late tectonic high-K calc-alkaline suite. U-Pb zircon dating yields ages of 635 ± 3 Ma and 613 ± 8 Ma on a peraluminous biotite-leucogranite (containing numerous inherited Archean and Paleoproterozoic zircon cores) and a muscovite-leucogranite, respectively. Geochemical fingerprints are very similar to some evolved Himalayan leucogranites suggesting their parental magmas were formed after muscovite and biotite dehydration melting of metasedimentary rocks. A biotite-granite sample belonging to the late tectonic high-K to shoshonitic suite contains zircon rims that yield an age of 540 ± 5 Ma with concordant inherited cores crystallized around 1050 Ma. Given the high-Mg# (59) andesitic composition of the intermediate pyroxene-monzonite, the very similar trace-element signature between the different rock types and the unradiogenic isotopic signature for Nd, the late-kinematic high-K to shoshonitic rocks formed after melting of the enriched mantle and further differentiation in the crust. These data indicate that the southern Ouaddaï was part of the Pan-African belt. It is proposed that it represents a continental back-arc basin characterized by a high-geothermal gradient during Early Ediacaran leading to anatexis of middle to lower crustal levels. After tectonic inversion during the main Pan-African phase, late kinematic high-K to shoshonitic plutons emplaced during the final post-collisional stage.


Sign in / Sign up

Export Citation Format

Share Document