magnetic fabric
Recently Published Documents


TOTAL DOCUMENTS

494
(FIVE YEARS 91)

H-INDEX

43
(FIVE YEARS 3)

2021 ◽  
Vol 54 (6) ◽  
pp. 629-647
Author(s):  
Mustapha Ait Daoud ◽  
Mourad Essalhi ◽  
Abdelhafid Essalhi ◽  
Abdeslam Toummite
Keyword(s):  

2021 ◽  
Author(s):  
◽  
Tasha Maria Black

<p>Voluminous, rhyolitic ignimbrites erupted from calderas in the Taupo Volcanic Zone (TVZ) of North Island, New Zealand during the last ca. 1.6 Ma, are characterised by geochemical, paleomagnetic, magnetic fabric and isotopic age techniques to determine their stratigraphy and source vent areas. Most of the welded ignimbrites record distinctive thermoremanent magnetism (TRM) directions that can be defined with a precision of less than 5 degrees. On this basis, individual ignimbrites may be identified and correlated. These data indicate that the voluminous Whakamaru group ignimbrites, mapped by various names in different parts of the TVZ, were probably erupted over a period of as little as 100 years. The Kaingaroa and Matahina ignimbrites display very similar TRM directions and may have been emplaced contemporaneously. Ahuroa and Mamaku ignimbrites display TRM directions widely different to that expected from a dipole field, and were emplaced during polarity transitions in Earth's magnetic field. Geochemically, glasses and FeTi-oxides from the TVZ ignimbrites are homogeneous and typical of high-SiO v2 (>75 wt percent) rhyolites. They indicate little evidence of derivation from physically or compositionally zoned magma chambers, and allow individual eruptives to be fingerprinted. Variable compositions of whole pumice clasts from welded units, previously interpreted as evidence for chemical zonation can be explained by glass alteration and variable mineral components. Geochemical and chronological data suggest the Rocky Hill Ignimbrite and/or Unit E ignimbrite (ca. 1 Ma) may be correlatives of the Potaka tephra, found in sedimentary basins outside the TVZ. Rock magnetic fabric studies using anisotropy of magnetic susceptibility of ignimbrites allow paleoflow patterns to be determined. These patterns are generally consistent with source areas inferred from other data. The source for Mamaku Ignimbrite is consistent with an area on the western margin of Lake Rotorua. The Whakamaru group ignimbrites appear to have originated north of Lake Taupo, and in particular from an area near the Western Dome Belt. Glass shards from nonwelded bases of ignimbrites are well suited to dating by the isothermal plateau fission track (ITPFT) method. Any partial fading of the spontaneous tracks has been corrected by a single-step heat treatment of 150 degrees C for 30 days. The resulting ages and their uncertainties are comparable is caret 40Ar/caret 39Ar plagioclase determinations. The following new eruption ages were determined: Whakamaru group ignimbrites (0.34 Plus-minus 0.03 Ma), Matahina Ignimbrite (0.34 Plus-minus 0.02 Ma), Kaingaroa ignimbrite (0.33 Plus-minus 0.02 Ma), informally named unit Downer 8 (0.33 Plus-minus 0.02 Ma), and Mamaku Ignimbrite (0.23 Plus-minus 0.01 Ma). These data suggest a major phase of activity, with several different caldera forming events in the interval ca. 0.35-0.32 Ma. The age of Mamaku Ignimbrite constrains the paleomagnetic excursion recorded in the unit to ca. 0.23 Ma, similar to the age of the Pringle Falls geomagnetic episode recorded in the western USA.</p>


2021 ◽  
Author(s):  
◽  
Tasha Maria Black

<p>Voluminous, rhyolitic ignimbrites erupted from calderas in the Taupo Volcanic Zone (TVZ) of North Island, New Zealand during the last ca. 1.6 Ma, are characterised by geochemical, paleomagnetic, magnetic fabric and isotopic age techniques to determine their stratigraphy and source vent areas. Most of the welded ignimbrites record distinctive thermoremanent magnetism (TRM) directions that can be defined with a precision of less than 5 degrees. On this basis, individual ignimbrites may be identified and correlated. These data indicate that the voluminous Whakamaru group ignimbrites, mapped by various names in different parts of the TVZ, were probably erupted over a period of as little as 100 years. The Kaingaroa and Matahina ignimbrites display very similar TRM directions and may have been emplaced contemporaneously. Ahuroa and Mamaku ignimbrites display TRM directions widely different to that expected from a dipole field, and were emplaced during polarity transitions in Earth's magnetic field. Geochemically, glasses and FeTi-oxides from the TVZ ignimbrites are homogeneous and typical of high-SiO v2 (>75 wt percent) rhyolites. They indicate little evidence of derivation from physically or compositionally zoned magma chambers, and allow individual eruptives to be fingerprinted. Variable compositions of whole pumice clasts from welded units, previously interpreted as evidence for chemical zonation can be explained by glass alteration and variable mineral components. Geochemical and chronological data suggest the Rocky Hill Ignimbrite and/or Unit E ignimbrite (ca. 1 Ma) may be correlatives of the Potaka tephra, found in sedimentary basins outside the TVZ. Rock magnetic fabric studies using anisotropy of magnetic susceptibility of ignimbrites allow paleoflow patterns to be determined. These patterns are generally consistent with source areas inferred from other data. The source for Mamaku Ignimbrite is consistent with an area on the western margin of Lake Rotorua. The Whakamaru group ignimbrites appear to have originated north of Lake Taupo, and in particular from an area near the Western Dome Belt. Glass shards from nonwelded bases of ignimbrites are well suited to dating by the isothermal plateau fission track (ITPFT) method. Any partial fading of the spontaneous tracks has been corrected by a single-step heat treatment of 150 degrees C for 30 days. The resulting ages and their uncertainties are comparable is caret 40Ar/caret 39Ar plagioclase determinations. The following new eruption ages were determined: Whakamaru group ignimbrites (0.34 Plus-minus 0.03 Ma), Matahina Ignimbrite (0.34 Plus-minus 0.02 Ma), Kaingaroa ignimbrite (0.33 Plus-minus 0.02 Ma), informally named unit Downer 8 (0.33 Plus-minus 0.02 Ma), and Mamaku Ignimbrite (0.23 Plus-minus 0.01 Ma). These data suggest a major phase of activity, with several different caldera forming events in the interval ca. 0.35-0.32 Ma. The age of Mamaku Ignimbrite constrains the paleomagnetic excursion recorded in the unit to ca. 0.23 Ma, similar to the age of the Pringle Falls geomagnetic episode recorded in the western USA.</p>


2021 ◽  
pp. 1-15
Author(s):  
Sreyashi Bhowmick ◽  
Tridib Kumar Mondal

Abstract The metavolcanics of Chitradurga region host numerous shallow crustal veins and fractures and faults of multiple orientations. Several high and low Pf cycles have been recorded in the region, leading to the reactivation of most of the pre-existing fractures for high Pf and selective reactivation of some well-oriented fractures under low Pf conditions. The pre-existing anisotropy (magnetic fabric) in the metavolcanics acted as the most prominent planar fabric for fracture propagation and vein emplacement under both conditions, thereby attaining maximum vein thickness. In this study, we emphasize the reactivation propensity of these pre-existing fracture planes under conditions of fluid pressure variation, related to the high and low Pf cycles. Multiple cycles of fluid-induced fracture reactivation make it difficult to quantify the maximum/minimum fluid pressure magnitudes. However, in this study we use the most appropriate fluid pressure magnitudes mathematically feasible for a shallow crustal depth of ∼2.4 km. We determine the changes in the reactivation potential with states of stress for the respective fracture orientations under both high and low Pf conditions. Dependence of fluid pressure variation on the opening angle of the fractures is also monitored. Finally, we comment on the failure mode and deformation behaviour of the fractures within the prevailing stress field inducing volumetric changes at the time of deformation. We find that deformation behaviour is directly related to the dip of the fracture planes.


2021 ◽  
Vol 267 ◽  
pp. 107057
Author(s):  
Chiara Költringer ◽  
Balázs Bradák ◽  
Thomas Stevens ◽  
Bjarne Almqvist ◽  
Adriano Banak ◽  
...  
Keyword(s):  

Author(s):  
Augusto E. Rapalini ◽  
Fernando Poblete ◽  
Cecilia Caballero Miranda ◽  
María Irene Bartolomeu Raposo

Sign in / Sign up

Export Citation Format

Share Document