scholarly journals Comment on “Densified multi-mission observations by developed optical water levels show marked increases in lake water storage and overflow floods on the Tibetan Plateau” by Xingdong Li et al.

2019 ◽  
Author(s):  
Yuyue xu
2019 ◽  
Author(s):  
Xingdong Li ◽  
Di Long ◽  
Qi Huang ◽  
Pengfei Han ◽  
Fanyu Zhao ◽  
...  

Abstract. The Tibetan Plateau (TP) known as Asia's water towers is quite sensitive to climate change, reflected by changes in hydrological state variables such as lake water storage. Given the extremely limited ground observations on the TP due to the harsh environment and complex terrain, we exploited multisource remote sensing, i.e., multiple altimetric missions and Landsat archives to create dense time series (monthly and even higher such as 10 days on average) of lake water level and storage changes across 52 large lakes (> 100 km2) on the TP during 2000–2017 (the data set is available online with a DOI: https://doi.org/10.1594/PANGAEA.898411). Field experiments were carried out in two typical lakes to validate the remotely sensed results. With Landsat archives and partial altimetry data, we developed optical water levels that cover most of TP lakes and serve as an ideal reference for merging multisource lake water levels. The optical water levels show an uncertainty of ~ 0.1 m that is comparable with most altimetry data and largely reduce the lack of dense altimetric observations with systematic errors well removed for most of lakes. The densified lake water levels provided critical and accurate information on the long-term and short-term monitoring of lake water level and storage changes on the TP. We found that the total storage of the 52 lakes increased by 97.3 km3 at two stages, i.e., 6.68 km3/yr during 2000–2012 and 2.85 km3/yr during 2012–2017. The total overflow from Lake Kusai to Lake Haidingnuoer and Lake Salt during Nov 9–Dec 31 in 2011 was estimated to be 0.22 km3, providing critical information on lake overflow flood monitoring and prediction as the expansion of some TP lakes becomes a serious threat to surrounding residents and infrastructure.


2019 ◽  
Vol 11 (4) ◽  
pp. 1603-1627 ◽  
Author(s):  
Xingdong Li ◽  
Di Long ◽  
Qi Huang ◽  
Pengfei Han ◽  
Fanyu Zhao ◽  
...  

Abstract. The Tibetan Plateau (TP), known as Asia's water tower, is quite sensitive to climate change, which is reflected by changes in hydrologic state variables such as lake water storage. Given the extremely limited ground observations on the TP due to the harsh environment and complex terrain, we exploited multiple altimetric missions and Landsat satellite data to create high-temporal-resolution lake water level and storage change time series at weekly to monthly timescales for 52 large lakes (50 lakes larger than 150 km2 and 2 lakes larger than 100 km2) on the TP during 2000–2017. The data sets are available online at https://doi.org/10.1594/PANGAEA.898411 (Li et al., 2019). With Landsat archives and altimetry data, we developed water levels from lake shoreline positions (i.e., Landsat-derived water levels) that cover the study period and serve as an ideal reference for merging multisource lake water levels with systematic biases being removed. To validate the Landsat-derived water levels, field experiments were carried out in two typical lakes, and theoretical uncertainty analysis was performed based on high-resolution optical images (0.8 m) as well. The RMSE of the Landsat-derived water levels is 0.11 m compared with the in situ measurements, consistent with the magnitude from theoretical analysis (0.1–0.2 m). The accuracy of the Landsat-derived water levels that can be derived in relatively small lakes is comparable with most altimetry data. The resulting merged Landsat-derived and altimetric lake water levels can provide accurate information on multiyear and short-term monitoring of lake water levels and storage changes on the TP, and critical information on lake overflow flood monitoring and prediction as the expansion of some TP lakes becomes a serious threat to surrounding residents and infrastructure.


2020 ◽  
Author(s):  
Liping Zhu ◽  
Baojin Qiao ◽  
Ruimin Yang ◽  
Chong Liu ◽  
Junbo Wang ◽  
...  

<p>The Tibetan Plateau is one of the most important high elevation areas on the earth, performing sensitive response to global changes. As the Asia water tower, high mountain melting water is important water supplies for human development in TP and surrounded areas, but water phase transition is less known, especially under the climatic warming. Lakes are links of water phase transition and water cycle in TP. Lake water storage variations are sensitive to precipitation differentiations in the domination of the Westerlies and Indian monsoon. However, lake water storage performs inconsistent response in different regions & time periods. Based upon water balance observation, lake water storage variations are influenced by different factors, which also changed during different time period. Lake water temperature and thermoclines vary with seasons, and change water temperature gradient which influence water-air heat exchange. Lake salinities generally decreased since 1970s in the Serling Co region due to increasing of water storage. Based upon more than 60 lakes monitoring correction, it is found that lake transparency generally increased during 2000-2017 inferred by remote sensing interpretation. To aim at the deep recognizing of interactions between lake water variations and climatic changes, we need to know lake water storages and their variations for whole region and consecutive time series. To understand how heat exchanges between changing lakes and atmosphere, we need more consecutive observation data from large lakes. Therefore, the proposed work is to finish more lake survey and water balance monitoring, and continue to improve water cycling studies in the large lake basin scale for deep understanding how water cycles accompanied with mass and nutrients under the warming climatic conditions.</p>


2021 ◽  
Vol 13 (10) ◽  
pp. 1984
Author(s):  
Baojin Qiao ◽  
Bingkang Nie ◽  
Changmao Liang ◽  
Longwei Xiang ◽  
Liping Zhu

Water resources are rich on the Tibetan Plateau, with large amounts of glaciers, lakes, and permafrost. Terrestrial water storage (TWS) on the Tibetan Plateau has experienced a significant change in recent decades. However, there is a lack of research about the spatial difference between TWSC and lake water storage change (LWSC), which is helpful to understand the response of water storage to climate change. In this study, we estimate the change in TWS, lake water storage (LWS), soil moisture, and permafrost, respectively, according to satellite and model data during 2005−2013 in the inner Tibetan Plateau and glacial meltwater from previous literature. The results indicate a sizeable spatial difference between TWSC and LWSC. LWSC was mainly concentrated in the northeastern part (18.71 ± 1.35 Gt, 37.7% of the total) and southeastern part (22.68 ± 1.63 Gt, 45.6% of the total), but the increased TWS was mainly in the northeastern region (region B, 18.96 ± 1.26 Gt, 57%). Based on mass balance, LWSC was the primary cause of TWSC for the entire inner Tibetan Plateau. However, the TWS of the southeastern part increased by 3.97 ± 2.5 Gt, but LWS had increased by 22.68 ± 1.63 Gt, and groundwater had lost 16.91 ± 7.26 Gt. The increased TWS in the northeastern region was equivalent to the increased LWS, and groundwater had increased by 4.47 ± 4.87 Gt. Still, LWS only increased by 2.89 ± 0.21 Gt in the central part, and the increase in groundwater was the primary cause of TWSC. These results suggest that the primary cause of increased TWS shows a sizeable spatial difference. According to the water balance, an increase in precipitation was the primary cause of lake expansion for the entire inner Tibetan Plateau, which contributed 73% (36.28 Gt) to lake expansion (49.69 ± 3.58 Gt), and both glacial meltwater and permafrost degradation was 13.5%.


2021 ◽  
Author(s):  
Weihan Jia ◽  
Kathleen Stoof-Leichsenring ◽  
Sisi Liu ◽  
Kai Li ◽  
Sichao Huang ◽  
...  

<p>Lake sedimentary DNA (<em>sed</em>DNA) is an established tool to trace past changes in vegetation composition and plant diversity. However, little is known about the relationships between sedimentary plant DNA and modern vegetational and environmental conditions. In this study, we investigate i) the relationships between the preservation of sedimentary plant DNA and environmental variables, ii) the modern analogue of ancient plant DNA assemblages archived in lake sediments, and iii) the usability of sedimentary plant DNA for characterization of terrestrial and aquatic plant composition and diversity based on a large dataset of PCR-amplified plant DNA data retrieved from 259 lake surface sediments from the Tibetan Plateau and Siberia. Our results indicate the following: i) Lake-water electrical conductivity and pH are the most important variables for the preservation of plant DNA in lake sediments. We expect the best preservation conditions for sedimentary plant DNA in small deep lakes characterized by high water conductivities (≥100 μS cm<sup>-1</sup>) and neutral to slightly alkaline pH conditions (7–9). ii) Plant DNA metabarcoding is promising for palaeovegetation reconstruction in high mountain regions, where shifts in vegetation are solely captured by the <em>sed</em>DNA-based analogue matching and fossil pollen generally has poor modern analogues. However, the biases in the representation of some taxa could lead to poor analogue conditions. iii) Plant DNA metabarcoding is a reliable proxy to reflect modern vegetation types and climate characteristics at a sub-continental scale. However, the resolution of the <em>trn</em>L P6 loop marker, the incompleteness of the reference library, and the extent of <em>sed</em>DNA preservation are still the main limitations of this method. iv) Plant DNA metabarcoding is a suitable proxy to recover modern aquatic plant diversity, which is mostly affected by July temperature and lake-water conductivity. Ongoing warming might decrease macrophyte richness in the Tibetan Plateau and Siberia, and ultimately threaten the health of these important freshwater ecosystems. To conclude, sedimentary plant DNA presents a high correlation with modern vegetation and may therefore be an important proxy for reconstruction of past vegetation.</p>


Sign in / Sign up

Export Citation Format

Share Document