water storage
Recently Published Documents


TOTAL DOCUMENTS

3766
(FIVE YEARS 1664)

H-INDEX

83
(FIVE YEARS 26)

2022 ◽  
Vol 261 ◽  
pp. 107359
Author(s):  
Han Li ◽  
Bing Cheng Si ◽  
Zhiqiang Zhang ◽  
Changhong Miao

2022 ◽  
Vol 308 ◽  
pp. 118274
Author(s):  
Xiangxiang Dong ◽  
Jiang Wu ◽  
Zhanbo Xu ◽  
Kun Liu ◽  
Xiaohong Guan

2022 ◽  
Author(s):  
Jinghua Xiong ◽  
Shenglian Guo ◽  
Jie Chen ◽  
Jiabo Yin

Abstract. The “dry gets drier and wet gets wetter” (DDWW) paradigm has been widely used to summarize the expected trends of the global hydrologic cycle under climate change. However, the paradigm is challenged over land due to different measures and datasets, and is still unexplored from the perspective of terrestrial water storage anomaly (TWSA). Considering the essential role of TWSA in wetting and drying of the land surface, here we built upon a large ensemble of TWSA datasets including satellite-based products, global hydrological models, land surface models, and global climate models to evaluate the DDWW hypothesis during the historical (1985–2014) and future (2071–2100) periods under various scenarios. We find that 27.1 % of global land confirms the DDWW paradigm, while 22.4 % of the area shows the opposite pattern during the historical period. In the future, the DDWW paradigm is still challenged with the percentage supporting the pattern lower than 20 %, and both the DDWW-validated and DDWW-opposed proportion increase along with the intensification of emission scenarios. Our findings will provide insights and implications for global wetting and drying trends from the perspective of TWSA under climate change.


2022 ◽  
Author(s):  
Jinxia An ◽  
Guangyao Gao ◽  
Chuan Yuan ◽  
Bojie Fu

Abstract. Rainfall is known as the main water replenishment in dryland ecosystem, and rainfall partitioning by vegetation reshapes the spatial and temporal distribution patterns of rainwater entry into the soil. The dynamics of rainfall partitioning have been extensively studied at the inter-event scale, yet very few studies have explored its finer intra-event dynamics and the relating driving factors for shrubs. Here, we conducted a concurrent in-depth investigation of rainfall partitioning at inter- and intra-event scales for two typical xerophytic shrubs (Caragana korshinskii and Salix psammophila) in the Liudaogou catchment of the Loess Plateau, China. The event throughfall (TF), stemflow (SF), and interception loss (IC) and their temporal variations within the rainfall event as well as the meteorological factors and vegetation characteristics were systematically measured during the 2014–2015 rainy seasons. The C. korshinskii had significantly higher SF percentage (9.2 %) and lower IC percentage (21.4 %) compared to S. psammophila (3.8 % and 29.5 %, respectively) (p < 0.05), but their TF percentages were not significantly different (69.4 % vs. 66.7 %). At the intra-event scale, TF and SF of S. psammophila was initiated (0.1 vs. 0.3 h and 0.7 vs. 0.8 h) and peaked (1.8 vs. 2.0 h and 2.1 vs. 2.2 h) more quickly, and TF of S. psammophila lasted longer (5.2 vs. 4.8 h), delivered more intensely (4.3 vs. 3.8 mm∙h−1), whereas SF of C. korshinskii lasted longer (4.6 vs. 4.1 h), delivered more intensely (753.8 vs. 471.2 mm∙h−1). For both shrubs, rainfall amount was the most significant factor influencing inter-event rainfall partitioning, and rainfall intensity and duration controlled the intra-event TF and SF variables. The C. korshinskii with larger branch angle, more small branches and smaller canopy area, has an advantage to produce stemflow more efficiently over S. psammophila. The S. psammophila has lower canopy water storage capacity to generate and peak throughfall and stemflow earlier, and it has larger aboveground biomass and total canopy water storage of individual plant to produce higher interception loss compared to C. korshinskii. These findings contribute to the fine characterization of shrub-dominated eco-hydrological processes, and improve the accuracy of water balance estimation in dryland ecosystem.


Sign in / Sign up

Export Citation Format

Share Document