scholarly journals Review of Seismo-acoustic energy partitioning of a powder snow avalanche

2019 ◽  
Author(s):  
Emma Surinach
2020 ◽  
Vol 8 (2) ◽  
pp. 399-411
Author(s):  
Emanuele Marchetti ◽  
Alec van Herwijnen ◽  
Marc Christen ◽  
Maria Cristina Silengo ◽  
Giulia Barfucci

Abstract. While flowing downhill, a snow avalanche radiates seismic waves in the ground and infrasonic waves in the atmosphere. Seismic energy is radiated by the dense basal layer flowing above the ground, while infrasound energy is likely radiated by the powder front. However, the mutual energy partitioning is not fully understood. We present infrasonic and seismic array data of a powder snow avalanche, which was released on 5 February 2016, in the Dischma valley above Davos, Switzerland. A five-element infrasound array, sensitive above 0.1 Hz, and a seven-element seismic array, sensitive above 4.5 Hz, were deployed at a short distance (<500 m) from each other and close (<1500 m) to the avalanche path. The avalanche dynamics were modelled by using RAMMS (rapid mass movement simulation) and characterized in terms of front velocity and flow height. The use of arrays rather than single sensors allowed us to increase the signal-to-noise ratio and to identify the event in terms of back-azimuth angle and apparent velocity of the recorded wave fields. Wave parameters, derived from array processing, were used to identify the avalanche path and highlight the areas, along the path, where seismic and infrasound energy radiation occurred. The analysis showed that seismic energy is radiated all along the avalanche path, from the initiation to the deposition area, while infrasound is radiated only from a limited sector, where the flow is accelerated and the powder cloud develops. The recorded seismic signal is characterized by scattered back-azimuth angle, suggesting that seismic energy is likely radiated by multiple sources acting at once. On the contrary, the infrasound signal is characterized by a clear variation of back-azimuth angle and apparent velocity. This indicates that infrasound energy radiation is dominated by a moving point source, likely consistent with the powder cloud. Thanks to such clear wave parameters, infrasound is revealed to be particularly efficient for avalanche detection and path identification. While the infrasound apparent velocity decreases as the flow moves downhill, the seismic apparent velocity is quite scattered but decreases to sound velocity during the phase of maximum infrasound radiation. This indicates an efficient process of infrasound to seismic energy transition, which, in our case, increases the recorded seismic amplitude by ∼20 %, at least in our frequency band of analysis. Such an effect can be accounted for when the avalanche magnitude is estimated from seismic amplitude. Presented results clearly indicate how the process of seismo-acoustic energy radiation by a powder avalanche is very complex and likely controlled by the powder cloud formation and dynamics, and the process is hence affected by the path geometry and snow characteristics.


2019 ◽  
Author(s):  
Emanuele Marchetti ◽  
Alec van Herwijnen ◽  
Marc Christen ◽  
Maria Cristina Silengo ◽  
Giulia Barfucci

Abstract. While flowing downhill, a snow avalanche radiates seismic waves in the ground and infrasonic waves in the atmosphere. Seismic energy is radiated by the dense basal layer flowing above the ground, while infrasound energy is likely radiated by the powder front. However, the mutual energy partitioning is not fully understood. We present infrasonic and seismic array data of a powder snow avalanche, that released on 5 February 2016, in the Dischma valley above Davos, Switzerland. A five element infrasound array and a seven element seismic array were deployed at short distance (


2016 ◽  
Vol 205 (3) ◽  
pp. 1900-1915 ◽  
Author(s):  
Pablo B. Palacios ◽  
Mikel Díez ◽  
J-Michael Kendall ◽  
Heidy M. Mader

Author(s):  
Kouhei KITOU ◽  
Takuma KOTANI ◽  
Yuya YAMAGUCHI ◽  
Shinsuke TAKASE ◽  
Shuji MORIGUCHI ◽  
...  
Keyword(s):  

Solar Energy ◽  
2021 ◽  
Vol 220 ◽  
pp. 578-589
Author(s):  
Maayan Friman-Peretz ◽  
Shay Ozer ◽  
Asher Levi ◽  
Esther Magadley ◽  
Ibrahim Yehia ◽  
...  

BMC Urology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chien-Sheng Wang ◽  
Ching-Chia Li ◽  
Wen-Jeng Wu ◽  
Wen-Chin Liou ◽  
Yusen Eason Lin ◽  
...  

Abstract Introduction Air pockets between the lithotripter head and body surface are almost inevitably generated when applying a handful of gel onto the contact portion of the treatment head and that on the patient’s skin during coupling procedure. These air pockets can compromise the transmission of acoustic energy of shock wave and may significantly affect efficacy of stone disintegration. Comparing to conventional gel, this study aims to investigate efficacy of stone disintegration by using a proprietary isolation-coupling pad (“icPad”) as the coupling medium to reduce trapped air pockets during ESWL procedure. Method In this phantom study, Dornier lithotripter (Delta-2 RC, Dornier MedTech Europe GmbH Co., Germany) was used with a proprietary gel pads (icPad, Diameter = 150 mm, Thickness = 4 mm and 8 mm). The lithotripter was equipped with inline camera to observe the trapped air pockets between the contact surface of the lithotripter head. A testing and measuring device were used to observe experimental stone disintegration using icPad and semi-liquid gel. The conventional semi-liquid gel was used as control for result comparison. Results The stone disintegration rate of icPad 4 mm and 8 mm after 200 shocks of energy at level 2 were significantly higher than that of the semi-liquid gel (disintegration rate 92.3%, 85.0% vs. 45.5%, respectively, p < 0.001). The number of shocks for complete stone disintegration by icPad of 4 mm and 8 mm at the same energy level 2 were significantly lower than that of the semi-liquid gel (the number of shocks 242.0 ± 13.8, 248.7 ± 6.3 vs. 351.0 ± 54.6, respectively, p = 0.011). Furthermore, quantitative comparison of observed air pockets under Optical Coupling Control (OCC) system showed that the area of air pockets in semi-liquid group was significantly larger than that of the group using icPad (8 mm) and that of the group using icPad (8 mm) after sliding (332.7 ± 91.2 vs. 50.3 ± 31.9, 120.3 ± 21.5, respectively, p < 0.05). Conclusion The advantages of icPad includes: (1) reduced the numbers of shock wave and increased stone disintegration rate due to icPad’s superior efficacy; (2) significantly reduce trapped air pockets in ESWL coupling. Due to the study limitation, more data are needed to confirm our observations before human trials.


Sign in / Sign up

Export Citation Format

Share Document