air pockets
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 53)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Author(s):  
James Lever ◽  
Susan Taylor ◽  
Arnold Song ◽  
Zoe Courville ◽  
Ross Lieblappen ◽  
...  

The mechanics of snow friction are central to competitive skiing, safe winter driving and efficient polar sleds. For nearly 80 years, prevailing theory has postulated that self-lubrication accounts for low kinetic friction on snow: dry-contact sliding warms snow grains to the melting point, and further sliding produces meltwater layers that lubricate the interface. We sought to verify that self-lubrication occurs at the grain scale and to quantify the evolution of real contact area to aid modeling. We used high-resolution (15 μm) infrared thermography to observe the warming of stationary snow under a rotating polyethylene slider. Surprisingly, we did not observe melting at contacting snow grains despite low friction values. In some cases, slider shear failed inter-granular bonds and produced widespread snow movement with no persistent contacts to melt (μ < 0.03). When the snow grains did not move and persistent contacts evolved, the slider abraded rather than melted the grains at low resistance (μ < 0.05). Optical microscopy revealed that the abraded particles deposited in air pockets between grains and thereby carried heat away from the interface, a process not included in current models. Overall, our results challenge whether self-lubrication is indeed the dominant mechanism underlying low snow kinetic friction.


2021 ◽  
Author(s):  
Hao-Han Chang ◽  
Yu-Chih Lin ◽  
Ching-Chia Li ◽  
Wen-Jeng Wu ◽  
Wen-Chin Liou ◽  
...  

Abstract This study aimed to investigate clinical effectiveness of stone disintegration by using isolation coupling pad(“icPad”) as coupling medium to reduce trapped air pockets during extracorporeal shock wave lithotripsy (ESWL). Patients underwent ESWL between Oct. 2017 to May. 2018 were enrolled in this clinical observational study. An electromagnetic lithotripter (Dornier MedTech Europe GmbH Co., Germany) was used in this study. Patients were divided into icPad group P1, P2 and semi-gel group C by different coupling medium. The energy level and total number of shock wave (SW) for group P1 and C was set at level 2 and 3000 and group P2 at level 3 and 2500. The successful stone disintegration rate (SSDR) was determined to evaluate the treatment outcome. All patients were evaluated by KUB film and ultrasonography after 90 days. Complications during ESWL were recorded. A total of 300 patients satisfied the inclusion criteria. There were no significant differences in characteristics of patients and stone among three groups. The corresponding SSDRs for patients in group P1, P2 and C was 73.0%, 73.2% and 55.3%, respectively. The SSDR in group P1 was statistically higher than Group C. Comparing to semi-liquid gel, coupling medium using by icPad could achieve better treatment outcome of stone disintegration in ESWL.


2021 ◽  
Vol 36 (5) ◽  
pp. 608-619
Author(s):  
F. Jakob ◽  
J. Pollmeier ◽  
H.-P. Heim

Abstract A new process to produce back-injected self-reinforced composites (SRCs) is presented. In contrast to other investigations on back-injection of SRCs, a process is presented which allows compacting and back injection of SRCs in one step where the SRCs are partly consolidated only via melt pressure inside the cavity. The mechanical properties of SRCs depend to a large extent on the process parameters of temperature and pressure during manufacture. These parameters are not yet known for back-injected areas. Sensors inside of the cavity measure the influences on the temperature and pressure conditions in the cavity. Initial studies on adhesion were carried out and analysed. For this purpose, shear tests of the back-injected component were carried out and a maximum shear strength of 5.81 MPa was determined for the materials used here. The investigations also show a dependence on the Distance from the Gate (DG) and the Mass temperature (TM). First microscopic examinations show good bonding between the SRC and the injection molded part, with no voids or air pockets in the boundary layer. It can also be seen that successful consolidation takes place in the area of the back injection.


Abstract : The procedure of bubbling while swimming assists swimmers with breathing appropriately. At the point when you swim, you breathe in through your mouth when your face is above water and breathe out through your mouth or nose when your face is submerged. Fledglings regularly alarm during the submerged stage and pause their breathing. By breathing out a constant flow of air pockets as you swim, you can stay away from this kind of pressure and spotlight on execution. Breathing inappropriately isn't only an amateur 'thing.' Many halfway and progressed swimmers don't have the legitimate breathing procedure, regularly pausing their breathing submerged and causing themselves superfluous strain. The specialist in above investigation contemplated the impact of preparing of rising on the breath holding limit. For the examination the understudies were picked haphazardly and broke down by measurable techniques. The critical impact of the foaming preparing was closed after the investigation. The analyst picked the swimmers. In this investigation the understudies were picked haphazardly having age bunch between 21 to 25. In the wake of breaking down the information by factual techniques it tracked down that foaming preparing has significant impact on the swimmers.


2021 ◽  
pp. jnumed.120.261032
Author(s):  
Hasan Sari ◽  
Ja Reaungamornrat ◽  
Onofrio Catalano ◽  
Javier Vera-Olmos ◽  
David Izquierdo-Garcia ◽  
...  
Keyword(s):  

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 861
Author(s):  
Benjamin J. Murphy ◽  
Edward A. Luy ◽  
Katerina L. Panzica ◽  
Gregory Johnson ◽  
Vincent J. Sieben

Reagent-based colorimetric analyzers often heat the fluid under analysis for improved reaction kinetics, whilst also aiming to minimize energy use per measurement. Here, a novel method of conserving heat energy on such microfluidic systems is presented. Our design reduces heat transfer to the environment by surrounding the heated optical cell on four sides with integral air pockets, thereby realizing an insulated and suspended bridge structure. Our design was simulated in COMSOL Multiphysics and verified in a polymethyl methacrylate (PMMA) device. We evaluate the effectiveness of the insulated design by comparing it to a non-insulated cell. For temperatures up to 55 °C, the average power consumption was reduced by 49.3% in the simulation and 40.2% in the experiment. The designs were then characterized with the vanadium and Griess reagent assay for nitrate at 35 °C. Nitrate concentrations from 0.25 µM to 50 µM were tested and yielded the expected linear relationship with a limit of detection of 20 nM. We show a reduction in energy consumption from 195 J to 119 J per 10 min measurement using only 4 µL of fluid. Efficient heating on-chip will have broad applicability to numerous colorimetric assays.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Paola Micaela Mafla-Endara ◽  
Carlos Arellano-Caicedo ◽  
Kristin Aleklett ◽  
Milda Pucetaite ◽  
Pelle Ohlsson ◽  
...  

AbstractMicrobes govern most soil functions, but investigation of these processes at the scale of their cells has been difficult to accomplish. Here we incubate microfabricated, transparent ‘soil chips’ with soil, or bury them directly in the field. Both soil microbes and minerals enter the chips, which enables us to investigate diverse community interdependences, such as inter-kingdom and food-web interactions, and feedbacks between microbes and the pore space microstructures. The presence of hyphae (‘fungal highways’) strongly and frequently increases the dispersal range and abundance of water-dwelling organisms such as bacteria and protists across air pockets. Physical forces such as water movements, but also organisms and especially fungi form new microhabitats by altering the pore space architecture and distribution of soil minerals in the chip. We show that soil chips hold a large potential for studying in-situ microbial interactions and soil functions, and to interconnect field microbial ecology with laboratory experiments.


2021 ◽  
pp. 1-7
Author(s):  
Juan S. Velandia ◽  
Alexander Diener ◽  
Stephan Bansmer

Abstract Atmospheric ice accretion results from the exposure of technical equipment or facilities to cold and humid environments. Supercooled droplets in a cloud can impact an airplane's surface and quickly form an ice layer. The presence of air pockets in such a layer is well known and explains the white appearance of some of the accretions. However, estimation of its porosity values and studies on the pore formation mechanics remain limited. In this study, we performed tests in an icing wind tunnel and scans with micro-computed tomography to address these issues. Here, we show that the accretion has closed porosity below 1%, which is mostly produced by the interaction between a spray-like impact on the water surface. The insights we provide here are important to improve ice accretion modelling techniques and establish a different approach to address the interaction between the cloud and the surfaces exposed to atmospheric icing.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xing Han ◽  
Wei Li ◽  
Haibo Zhao ◽  
Jiaqian Li ◽  
Xin Tang ◽  
...  

AbstractIn diverse processes, such as fertilization, insecticides, and cooling, liquid delivery is compromised by the super-repellency of receiving surfaces, including super-hydro-/omni-phobic and superheated types, a consequence of intercalated air pockets or vapor cushions that promote droplet rebounds as floating mass-spring systems. By simply overlaying impacting droplets with a tiny amount of lubricant (less than 0.1 vol% of the droplet), their interfacial properties are modified in such a way that damper-roller support is attached to the mass-spring system. The overlayers suppress the out-of-plane rebounds by slowing the departing droplets through viscous dissipation and sustain the droplets’ in-plane mobility through self-lubrication, a preferential state for scenarios such as shedding of liquid in spray cooling and repositioning of droplets in printing. The footprint of our method can be made to be minimal, circumventing surface contamination and toxification. Our method enables multifunctional and dynamic control of droplets that impact different types of nonwetting surfaces.


BMC Urology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chien-Sheng Wang ◽  
Ching-Chia Li ◽  
Wen-Jeng Wu ◽  
Wen-Chin Liou ◽  
Yusen Eason Lin ◽  
...  

Abstract Introduction Air pockets between the lithotripter head and body surface are almost inevitably generated when applying a handful of gel onto the contact portion of the treatment head and that on the patient’s skin during coupling procedure. These air pockets can compromise the transmission of acoustic energy of shock wave and may significantly affect efficacy of stone disintegration. Comparing to conventional gel, this study aims to investigate efficacy of stone disintegration by using a proprietary isolation-coupling pad (“icPad”) as the coupling medium to reduce trapped air pockets during ESWL procedure. Method In this phantom study, Dornier lithotripter (Delta-2 RC, Dornier MedTech Europe GmbH Co., Germany) was used with a proprietary gel pads (icPad, Diameter = 150 mm, Thickness = 4 mm and 8 mm). The lithotripter was equipped with inline camera to observe the trapped air pockets between the contact surface of the lithotripter head. A testing and measuring device were used to observe experimental stone disintegration using icPad and semi-liquid gel. The conventional semi-liquid gel was used as control for result comparison. Results The stone disintegration rate of icPad 4 mm and 8 mm after 200 shocks of energy at level 2 were significantly higher than that of the semi-liquid gel (disintegration rate 92.3%, 85.0% vs. 45.5%, respectively, p < 0.001). The number of shocks for complete stone disintegration by icPad of 4 mm and 8 mm at the same energy level 2 were significantly lower than that of the semi-liquid gel (the number of shocks 242.0 ± 13.8, 248.7 ± 6.3 vs. 351.0 ± 54.6, respectively, p = 0.011). Furthermore, quantitative comparison of observed air pockets under Optical Coupling Control (OCC) system showed that the area of air pockets in semi-liquid group was significantly larger than that of the group using icPad (8 mm) and that of the group using icPad (8 mm) after sliding (332.7 ± 91.2 vs. 50.3 ± 31.9, 120.3 ± 21.5, respectively, p < 0.05). Conclusion The advantages of icPad includes: (1) reduced the numbers of shock wave and increased stone disintegration rate due to icPad’s superior efficacy; (2) significantly reduce trapped air pockets in ESWL coupling. Due to the study limitation, more data are needed to confirm our observations before human trials.


Sign in / Sign up

Export Citation Format

Share Document