scholarly journals ChAP 1.0: a stationary tropospheric sulfur cycle for Earth system models of intermediate complexity

2021 ◽  
Vol 14 (12) ◽  
pp. 7725-7747
Author(s):  
Alexey V. Eliseev ◽  
Rustam D. Gizatullin ◽  
Alexandr V. Timazhev

Abstract. A stationary, computationally efficient scheme ChAP 1.0 (Chemical and Aerosol Processes, version 1.0) for the sulfur cycle in the troposphere is developed. This scheme is designed for Earth system models of intermediate complexity (EMICs). The scheme accounts for sulfur dioxide emissions into the atmosphere, its deposition to the surface, oxidation to sulfates, and dry and wet deposition of sulfates on the surface. The calculations with the scheme are forced by anthropogenic emissions of sulfur dioxide into the atmosphere for 1850–2000 adopted from the CMIP5 dataset and by the ERA-Interim meteorology assuming that natural sources of sulfur into the atmosphere remain unchanged during this period. The ChAP output is compared to changes of the tropospheric sulfur cycle simulations with the CMIP5 data, with the IPCC TAR ensemble, and with the ACCMIP phase II simulations. In addition, in regions of strong anthropogenic sulfur pollution, ChAP results are compared to other data, such as the CAMS reanalysis, EMEP MSC-W, and individual model simulations. Our model reasonably reproduces characteristics of the tropospheric sulfur cycle known from these information sources. In our scheme, about half of the emitted sulfur dioxide is deposited to the surface, and the rest is oxidised into sulfates. In turn, sulfates are mostly removed from the atmosphere by wet deposition. The lifetimes of the sulfur dioxide and sulfates in the atmosphere are close to 1 and 5 d, respectively. The limitations of the scheme are acknowledged, and the prospects for future development are figured out. Despite its simplicity, ChAP may be successfully used to simulate anthropogenic sulfur pollution in the atmosphere at coarse spatial scales and timescales.

2021 ◽  
Author(s):  
Alexey V. Eliseev ◽  
Rustam D. Gizatullin ◽  
Alexandr V. Timazhev

Abstract. A stationary, computationally efficient scheme ChAP-1.0 (Chemical and Aerosol Processes, version 1.0) for the sulphur cycle in the troposphere is developed. This scheme is designed for Earth system models of intermediate complexity (EMICs). The scheme accounts for sulphur dioxide emissions into the atmosphere, its deposition to the surface, oxidation to sulphates, and dry and wet deposition of sulphates on the surface. The calculations with the scheme are performed forced by anthropogenic emissions of sulphur dioxide into the atmosphere for 1850–2000 adopted from the CMIP5 dataset and by the ERA-Interim meteorology assuming that natural sources of sulphur into the atmosphere remain unchanged during this period. The ChAP output is compared to changes of the tropospheric sulphur cycle simulations: with the CMIP5 data, with the IPCC TAR ensemble, and with the ACCMIP phase II simulations. In addition, in regions of strong anthropogenic sulphur pollution, ChAP results are compared to other data, such as the CAMS reanalysis, EMEP MSC-W, and with individual model simulations. Our model reasonably reproduces characteristics of the tropospheric sulphur cycle known from these information sources. In our scheme, about half of the emitted sulphur dioxide is deposited to the surface and the rest in oxidised into sulphates. In turn, sulphates are mostly removed from the atmosphere by wet deposition. The lifetime of the sulphur dioxide and sulphates in the atmosphere is close to 1 day and 5 days, respectively. The limitation of the scheme are acknowledged and the prospects for future development are figured out. Despite its simplicity, ChAP may be successfully used to simulate anthropogenic sulphur pollution in the atmosphere at coarse spatial and time scales.


2021 ◽  
Author(s):  
Carolina Gallo Granizo ◽  
Jonathan Eden ◽  
Bastien Dieppois ◽  
Matthew Blackett

<p>Weather and climate play an important role in shaping global fire regimes and geographical distributions of burnable areas. At the global scale, fire danger is likely to increase in the near future due to warmer temperatures and changes in precipitation patterns, as projected by the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). There is a need to develop the most reliable projections of future climate-driven fire danger to enable decision makers and forest managers to take both targeted proactive actions and to respond to future fire events.</p><p>Climate change projections generated by Earth System Models (ESMs) provide the most important basis for understanding past, present and future changes in the climate system and its impacts. ESMs are, however, subject to systematic errors and biases, which are not fully taken into account when developing risk scenarios for wild fire activity. Projections of climate-driven fire danger have often been limited to the use of single models or the mean of multi-model ensembles, and compared to a single set of observational data (e.g. one index derived from one reanalysis).</p><p>Here, a comprehensive global evaluation of the representation of a series of fire weather indicators in the latest generation of ESMs is presented. Seven fire weather indices from the Canadian Forest Fire Weather Index System were generated using daily fields realisations simulated by 25 ESMs from the 6<sup>th</sup> Coupled Model Intercomparison Project (CMIP6). With reference to observational and reanalysis datasets, we quantify the capacity of each model to realistically simulate the variability, magnitude and spatial extent of fire danger. The highest-performing models are identified and, subsequently, the limitations of combining models based on independency and equal performance when generating fire danger projections are discussed. To conclude, recommendations are given for the development of user- and policy-driven model evaluation at spatial scales relevant for decision-making and forest management.</p>


2021 ◽  
Author(s):  
Alexey V. Eliseev ◽  
Rustam D. Gizatullin ◽  
Alexandr V. Timazhev

<p>A stationary, computationally efficient  scheme, ChAP-1.0 (Chemistry and Aerosol Processes, version 1.0) for the sulphur cycle in the troposphereis developed. This scheme is envisaged to be implemented into Earth system models of intermediate complexity (EMICs). The scheme accounts for sulphur dioxide emissions into the atmosphere, its deposition to the surface, oxidation to sulphates, and dry and wet deposition of sulphates on the surface.<br>The calculations with the scheme were performed with the anthropogenic emissions of sulphur compounds into the atmosphere for 1850-2000 according to the CMIP5 (Coupled Models Intercomparison Project, phase 5) 'historical' protocol, with the ERA-Interim meteorology, and assuming that natural sources of sulphur into the atmosphere remain unchanged during this period. The model reasonably reproduces characteristics of the tropospheric sulphur cycle known from observations and other simulations (e.g., in the Atmospheric Chemistry and Climate Model Intercomparison Project phase II (ACCMIP) simulations, Copernicus Atmosphere Monitoring Service (CAMS) reanalysis, and the Meteorological Synthesizing Centre–West of the European Monitoring and Evaluation Programme (EMEP MSC-W) data). In particular, in 1980's and 1990's, , when the global anthropogenic emission of sulphur, global atmospheric burdens of SO<sub>2</sub> and SO<sub>4</sub> account, correspondingly, 0.2 TgS and 0.4 TgS. In our scheme, about half of the emitted sulphur dioxide is deposited to the surface and the rest in oxidised into sulphates. The latter mostly removed from the atmosphere by wet deposition. The lifetime of the SO<sub>2</sub> and SO<sub>4</sub> in the atmosphere is, respectively, 1.0±0.1 days and 4.1±0.3 days.<br>Despite its simplicity, our scheme may be successfully used to simulate sulphur/sulphates pollution in the atmosphere at coarse spatial and time scales and an impact of this pollution to direct radiative effect of sulphates on climate, their respective indirect (cloud- and precipitation-related) effects, as well as an impact of sulphur compounds on the terrestrial carbon cycle.</p>


2007 ◽  
Vol 4 (6) ◽  
pp. 396 ◽  
Author(s):  
Mike Harvey

Environmental context. A ‘climate stabilising’ feedback system known as the CLAW hypothesis, which involves the phytoplankton driven influence on cloud reflectivity through the cycling of sulfur was proposed ~20 years ago, and because of its complexity, it remains unproven today. Since the CLAW proposal, experiments that have added iron to the ocean have proven that iron can significantly limit phytoplankton productivity and can also affect the marine sulfur cycle in a complex manner. Because of a range of possible feedbacks between iron, sulfur and climate, it is likely that future advances in understanding the CLAW hypothesis will require a comprehensive process-based description that can be tested in fully coupled earth-system models.


Sign in / Sign up

Export Citation Format

Share Document