feedback system
Recently Published Documents


TOTAL DOCUMENTS

2577
(FIVE YEARS 628)

H-INDEX

61
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Yoshimi Kubota ◽  
Steven Clemens ◽  
Kyung Eun Lee ◽  
Ann Holbourn ◽  
Etsuko Wakisaka ◽  
...  

Abstract The history of abrupt climate change in East Asia is often discussed from hydroclimate proxies that record the isotopic composition of rainfall. However, the underlying mechanisms remain obscure because water-isotope proxies respond to a wide variety of environmental variables. Here, we investigated millennial-scale climate variability in East Asia over the past 400,000 years using paired foraminiferal oxygen isotope and Mg/Ca records from the East Asian continental margin, thereby resolving variance into temperature and rainfall components. We found that the temperature and rainfall variabilities are largely asynchronous, with times when the global climate shifts from interglacial to glacial periods being the notable exception. These findings highlight the importance of both mean global state and magnitude of North Atlantic variability in determining the East Asian climate. Without a strong North Atlantic forcing, the regional feedback system might generate asynchronous temperature and rainfall variations, which is the background climate feature in East Asia.


2022 ◽  
Vol 8 ◽  
Author(s):  
Tomomichi Sugihara ◽  
Daishi Kaneta ◽  
Nobuyuki Murai

This article proposes a process to identify the standing stabilizer, namely, the controller in humans to keep upright posture stable against perturbations. We model the controller as a piecewise-linear feedback system, where the state of the center of mass (COM) is regulated by coordinating the whole body so as to locate the zero-moment point (ZMP) at the desired position. This was developed for humanoid robots and is possibly able to elaborate the fundamental control scheme used by humans to stabilize themselves. Difficulties lie on how to collect motion trajectories in a wide area of the state space for reliable identification and how to identify the piecewise-affine dynamical system. For the former problem, a motion measurement protocol is devised based on the theoretical phase portrait of the system. Regarding the latter problem, some clustering techniques including K-means method and EM (Expectation-and-Maximization) algorithm were examined. We found that a modified K-means method produced the most accurate result in this study. The method was applied to the identification of a lateral standing controller of a human subject. The result of the identification quantitatively supported a hypothesis that the COM-ZMP regulator reasonably models the human’s controller when deviations of the angular momentum about the COM are limited.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 361
Author(s):  
Shah Khusro ◽  
Babar Shah ◽  
Inayat Khan ◽  
Sumayya Rahman

Feedback is one of the significant factors for the mental mapping of an environment. It is the communication of spatial information to blind people to perceive the surroundings. The assistive smartphone technologies deliver feedback for different activities using several feedback mediums, including voice, sonification and vibration. Researchers 0have proposed various solutions for conveying feedback messages to blind people using these mediums. Voice and sonification feedback are effective solutions to convey information. However, these solutions are not applicable in a noisy environment and may occupy the most important auditory sense. The privacy of a blind user can also be compromised with speech feedback. The vibration feedback could effectively be used as an alternative approach to these mediums. This paper proposes a real-time feedback system specifically designed for blind people to convey information to them based on vibration patterns. The proposed solution has been evaluated through an empirical study by collecting data from 24 blind people through a mixed-mode survey using a questionnaire. Results show the average recognition accuracy for 10 different vibration patterns are 90%, 82%, 75%, 87%, 65%, and 70%.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 373
Author(s):  
Ciprian Lapusan ◽  
Olimpiu Hancu ◽  
Ciprian Rad

The paper proposes a novel approach for shape sensing of hyper-redundant robots based on an AHRS IMU sensor network embedded into the structure of the robot. The proposed approach uses the data from the sensor network to directly calculate the kinematic parameters of the robot in modules operational space reducing thus the computational time and facilitating implementation of advanced real-time feedback system for shape sensing. In the paper the method is applied for shape sensing and pose estimation of an articulated joint-based hyper-redundant robot with identical 2-DoF modules serially connected. Using a testing method based on HIL techniques the authors validate the computed kinematic model and the computed shape of the robot prototype. A second testing method is used to validate the end effector pose using an external sensory system. The experimental results obtained demonstrate the feasibility of using this type of sensor network and the effectiveness of the proposed shape sensing approach for hyper-redundant robots.


2021 ◽  
Vol 12 (1) ◽  
pp. 339
Author(s):  
Mykhailo Riabtsev ◽  
Victor Petuya ◽  
Mónica Urízar ◽  
Oscar Altuzarra

This paper presents the design and testing of two haptic devices, based on reconfigurable 2R joints: an active 2R spherical mechanism-based joint and a differential gear-based joint. Based on our previous works, in which the design and kinematic analysis of both reconfigurable joints were developed, the experimental setup and the various tasks intended to test the reconfigurability, precision, force feedback system and general performance, are presented herein. Two control modes for the haptic device operation are proposed and studied. The statistical analysis tools and their selection principles are described. The mechanical design of two experimental setups and the main elements are considered in detail. The Robot Operating System nodes and the topics that are used in the software component of the experimental setup are presented and explained. The experimental testing was carried out with a number of participants and the corresponding results were analyzed with the selected statistical tools. A detailed interpretation and discussion on of the results is provided.


Author(s):  
Mahyuzie Jenal ◽  
◽  
Hakimi Zikri Nasirin ◽  
Nur Aida Nabilah Mohd Razali @ Kamaruddin ◽  
Syed Amiruddin Hilmi Sayed Mohd Albakir ◽  
...  

Internet of Things (IoT) is the most discussed topic nowadays and it finds many applications in various industries. The development of efficient agricultural systems has become essential to address the challenges of feeding the enormous and ever-increasing population around the globe. One way of dealing with this is to expand agricultural production standard and quantity. An integrated IoT system with irrigation and finishing on the market was missing. To increase production efficiency, farmers shall collect massive data from various devices. The system's effectiveness depends on the performance of the sensor under various climate changes. The network and a closed-loop feedback system need to be connected to the system for maximum operational capacity. The module of the Soil Moisture Sensor and the MCU ESP8266 V2 MCU Node, the float switch and the 5V Optocoupler relay module are used in this project. The remote control of the system is a mobile application. If the moisture level in the soil reaches the desired value, it will stop water supply. The project could be expended on a larger scale in the future and the system may also be developed with solar energy rather than batteries.


Sign in / Sign up

Export Citation Format

Share Document