efficient scheme
Recently Published Documents


TOTAL DOCUMENTS

698
(FIVE YEARS 149)

H-INDEX

31
(FIVE YEARS 4)

2022 ◽  
Vol 71 ◽  
pp. 103184
Author(s):  
Caren Babu ◽  
D. Abraham Chandy ◽  
Hepzibah A. Christinal

2021 ◽  
Author(s):  
Shivam Kalra ◽  
Junfeng Wen ◽  
Jesse Cresswell ◽  
Maksims Volkovs ◽  
Hamid Tizhoosh

Abstract Institutions in highly regulated domains such as finance and healthcare often have restrictive rules around data sharing. Federated learning is a distributed learning framework that enables multi-institutional collaborations on decentralized data with improved protection for each collaborator’s data privacy. In this paper, we propose a communication-efficient scheme for decentralized federated learning called ProxyFL, or proxy-based federated learning. Each participant in ProxyFL maintains two models, a private model, and a publicly shared proxy model designed to protect the participant’s privacy. Proxy models allow efficient information exchange among participants using the PushSum method without the need of a centralized server. The proposed method eliminates a significant limitation of canonical federated learning by allowing model heterogeneity; each participant can have a private model with any architecture. Furthermore, our protocol for communication by proxy leads to stronger privacy guarantees using differential privacy analysis. Experiments on popular image datasets, and a pan-cancer diagnostic problem using over 30,000 high-quality gigapixel histology whole slide images, show that ProxyFL can outperform existing alternatives with much less communication overhead and stronger privacy.


2021 ◽  
Author(s):  
Pengbo Liu ◽  
Zhenghe Zhang ◽  
Man Lang ◽  
Wanli Lu ◽  
Ping Bai ◽  
...  

Abstract Collective Mie resonances in silicon (Si) nanoparticle arrays (NPAs) feature low absorption losses and strong field enhancement extending to a large area. They provide a high-efficient scheme to manipulate the emission properties of monolayer semiconductors. However, the poor quality factor of the current reported Si NPA limits the performance of light-emitting devices. It is mainly due to the constituent materials of nanoparticles being amorphous or polycrystalline silicon, which have higher absorption coefficients in comparison with monocrystalline silicon (c-Si) among the visible band. This invited paper demonstrates a versatile technique to integrate the atomic layers onto the c-Si NPA. We show that our method can fully preserve the monolayer sample. We further investigate the directional emission tailored by the NPA with different diameters by combining back-focal-plane imaging and reciprocity simulations. The flexible tune of the geometry parameters of NPAs can offer many possibilities to control and manipulate the emission from monolayer semiconductors by engineering their photonic environments.


Author(s):  
S. Salimian ◽  
Mohammad K. Tavassoly ◽  
N. Sehati

Abstract An efficient scheme is proposed to teleport an entangled state of two superconducting (SC) qubits from Alice's to Bob's lab. This type of two-level systems has recently attracted a lot of attention due to the possible tunability of the coupling strength of the qubits with each other. To achieve the purpose, we first generate the GHZ state as the necessary teleportation channel. Then, appropriate interactions are performed in two processes between two of the five qubits, each with a certain frequency modulative external magnetic field which is applied on specific one of the qubits. Next, via applying proper gates and measurements in each lab, we observe that the teleportation can be successfully performed with maximum possible values of fidelity and success probability. At last, to make the protocol close to reality, decay rates of SC qubits are also taken into account, showing that our protocol still works well, satisfactorily.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1506
Author(s):  
Hongyi Yuan ◽  
Zhouhui Liu ◽  
Maoliang Wei ◽  
Hongtao Lin ◽  
Xiaoyong Hu ◽  
...  

The topological nanophotonic wavelength router, which can steer light with different wavelength signals into different topological channels, plays a key role in optical information processing. However, no effective method has been found to realize such a topological nanophotonic device. Here, an on-chip topological nanophotonic wavelength router working in an optical telecom band is designed based on a topology optimization algorithm and experimentally demonstrated. Valley photonic crystal is used to provide a topological state in the optical telecom band. The measured topological wavelength router has narrow signal peaks and is easy for integration. This work offers an efficient scheme for the realization of topological devices and lays a foundation for the future application of topological photonics.


2021 ◽  
Author(s):  
Partha Sarathi Paul ◽  
Anurag Dhungel ◽  
Maisha Sadia ◽  
Md Razuan Hossain ◽  
Barry Muldrey ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document