Executive Editor comment on "Computationally Efficient Emulators for Earth System Models"

2018 ◽  
Author(s):  
Astrid Kerkweg
2021 ◽  
Author(s):  
Alexey V. Eliseev ◽  
Rustam D. Gizatullin ◽  
Alexandr V. Timazhev

Abstract. A stationary, computationally efficient scheme ChAP-1.0 (Chemical and Aerosol Processes, version 1.0) for the sulphur cycle in the troposphere is developed. This scheme is designed for Earth system models of intermediate complexity (EMICs). The scheme accounts for sulphur dioxide emissions into the atmosphere, its deposition to the surface, oxidation to sulphates, and dry and wet deposition of sulphates on the surface. The calculations with the scheme are performed forced by anthropogenic emissions of sulphur dioxide into the atmosphere for 1850–2000 adopted from the CMIP5 dataset and by the ERA-Interim meteorology assuming that natural sources of sulphur into the atmosphere remain unchanged during this period. The ChAP output is compared to changes of the tropospheric sulphur cycle simulations: with the CMIP5 data, with the IPCC TAR ensemble, and with the ACCMIP phase II simulations. In addition, in regions of strong anthropogenic sulphur pollution, ChAP results are compared to other data, such as the CAMS reanalysis, EMEP MSC-W, and with individual model simulations. Our model reasonably reproduces characteristics of the tropospheric sulphur cycle known from these information sources. In our scheme, about half of the emitted sulphur dioxide is deposited to the surface and the rest in oxidised into sulphates. In turn, sulphates are mostly removed from the atmosphere by wet deposition. The lifetime of the sulphur dioxide and sulphates in the atmosphere is close to 1 day and 5 days, respectively. The limitation of the scheme are acknowledged and the prospects for future development are figured out. Despite its simplicity, ChAP may be successfully used to simulate anthropogenic sulphur pollution in the atmosphere at coarse spatial and time scales.


2018 ◽  
Author(s):  
Robert Link ◽  
Cary Lynch ◽  
Abigail Snyder ◽  
Corinne Hartin ◽  
Ben Kravitz ◽  
...  

Abstract. Earth System Models (ESMs) are the gold standard for producing future projections of climate change, but running them is difficult and costly, and thus researchers are generally limited to a small selection of scenarios. This paper presents a technique for detailed emulation of Earth System Model (ESM) temperature output, based on constructing a deterministic model for the mean response to global temperature. The residuals between the mean response and the observed temperature fields are used to construct variability fields that are added to the mean response to produce the final product. The method produces grid-level output with spatially and temporally coherent variability. Output fields include random components, so the system may be run as many times as necessary to produce large ensembles of fields for uncertainty studies and similar uses. We describe the method, show example outputs, and present statistical verification that it reproduces the ESM properties it is intended to capture. This method, available as an open-source R package, should have utility in the study of climate uncertainty and variability, extreme events, and climate change mitigation.


2021 ◽  
Vol 14 (12) ◽  
pp. 7725-7747
Author(s):  
Alexey V. Eliseev ◽  
Rustam D. Gizatullin ◽  
Alexandr V. Timazhev

Abstract. A stationary, computationally efficient scheme ChAP 1.0 (Chemical and Aerosol Processes, version 1.0) for the sulfur cycle in the troposphere is developed. This scheme is designed for Earth system models of intermediate complexity (EMICs). The scheme accounts for sulfur dioxide emissions into the atmosphere, its deposition to the surface, oxidation to sulfates, and dry and wet deposition of sulfates on the surface. The calculations with the scheme are forced by anthropogenic emissions of sulfur dioxide into the atmosphere for 1850–2000 adopted from the CMIP5 dataset and by the ERA-Interim meteorology assuming that natural sources of sulfur into the atmosphere remain unchanged during this period. The ChAP output is compared to changes of the tropospheric sulfur cycle simulations with the CMIP5 data, with the IPCC TAR ensemble, and with the ACCMIP phase II simulations. In addition, in regions of strong anthropogenic sulfur pollution, ChAP results are compared to other data, such as the CAMS reanalysis, EMEP MSC-W, and individual model simulations. Our model reasonably reproduces characteristics of the tropospheric sulfur cycle known from these information sources. In our scheme, about half of the emitted sulfur dioxide is deposited to the surface, and the rest is oxidised into sulfates. In turn, sulfates are mostly removed from the atmosphere by wet deposition. The lifetimes of the sulfur dioxide and sulfates in the atmosphere are close to 1 and 5 d, respectively. The limitations of the scheme are acknowledged, and the prospects for future development are figured out. Despite its simplicity, ChAP may be successfully used to simulate anthropogenic sulfur pollution in the atmosphere at coarse spatial scales and timescales.


2011 ◽  
Vol 6 ◽  
pp. 216-221
Author(s):  
Sönke Zaehle ◽  
Colin Prentice ◽  
Sarah Cornell

Sign in / Sign up

Export Citation Format

Share Document