Revised title for "Computationally Efficient Emulators for Earth System Models"

2018 ◽  
Author(s):  
Robert Link
2021 ◽  
Author(s):  
Alexey V. Eliseev ◽  
Rustam D. Gizatullin ◽  
Alexandr V. Timazhev

Abstract. A stationary, computationally efficient scheme ChAP-1.0 (Chemical and Aerosol Processes, version 1.0) for the sulphur cycle in the troposphere is developed. This scheme is designed for Earth system models of intermediate complexity (EMICs). The scheme accounts for sulphur dioxide emissions into the atmosphere, its deposition to the surface, oxidation to sulphates, and dry and wet deposition of sulphates on the surface. The calculations with the scheme are performed forced by anthropogenic emissions of sulphur dioxide into the atmosphere for 1850–2000 adopted from the CMIP5 dataset and by the ERA-Interim meteorology assuming that natural sources of sulphur into the atmosphere remain unchanged during this period. The ChAP output is compared to changes of the tropospheric sulphur cycle simulations: with the CMIP5 data, with the IPCC TAR ensemble, and with the ACCMIP phase II simulations. In addition, in regions of strong anthropogenic sulphur pollution, ChAP results are compared to other data, such as the CAMS reanalysis, EMEP MSC-W, and with individual model simulations. Our model reasonably reproduces characteristics of the tropospheric sulphur cycle known from these information sources. In our scheme, about half of the emitted sulphur dioxide is deposited to the surface and the rest in oxidised into sulphates. In turn, sulphates are mostly removed from the atmosphere by wet deposition. The lifetime of the sulphur dioxide and sulphates in the atmosphere is close to 1 day and 5 days, respectively. The limitation of the scheme are acknowledged and the prospects for future development are figured out. Despite its simplicity, ChAP may be successfully used to simulate anthropogenic sulphur pollution in the atmosphere at coarse spatial and time scales.


2018 ◽  
Author(s):  
Robert Link ◽  
Cary Lynch ◽  
Abigail Snyder ◽  
Corinne Hartin ◽  
Ben Kravitz ◽  
...  

Abstract. Earth System Models (ESMs) are the gold standard for producing future projections of climate change, but running them is difficult and costly, and thus researchers are generally limited to a small selection of scenarios. This paper presents a technique for detailed emulation of Earth System Model (ESM) temperature output, based on constructing a deterministic model for the mean response to global temperature. The residuals between the mean response and the observed temperature fields are used to construct variability fields that are added to the mean response to produce the final product. The method produces grid-level output with spatially and temporally coherent variability. Output fields include random components, so the system may be run as many times as necessary to produce large ensembles of fields for uncertainty studies and similar uses. We describe the method, show example outputs, and present statistical verification that it reproduces the ESM properties it is intended to capture. This method, available as an open-source R package, should have utility in the study of climate uncertainty and variability, extreme events, and climate change mitigation.


2021 ◽  
Vol 14 (12) ◽  
pp. 7725-7747
Author(s):  
Alexey V. Eliseev ◽  
Rustam D. Gizatullin ◽  
Alexandr V. Timazhev

Abstract. A stationary, computationally efficient scheme ChAP 1.0 (Chemical and Aerosol Processes, version 1.0) for the sulfur cycle in the troposphere is developed. This scheme is designed for Earth system models of intermediate complexity (EMICs). The scheme accounts for sulfur dioxide emissions into the atmosphere, its deposition to the surface, oxidation to sulfates, and dry and wet deposition of sulfates on the surface. The calculations with the scheme are forced by anthropogenic emissions of sulfur dioxide into the atmosphere for 1850–2000 adopted from the CMIP5 dataset and by the ERA-Interim meteorology assuming that natural sources of sulfur into the atmosphere remain unchanged during this period. The ChAP output is compared to changes of the tropospheric sulfur cycle simulations with the CMIP5 data, with the IPCC TAR ensemble, and with the ACCMIP phase II simulations. In addition, in regions of strong anthropogenic sulfur pollution, ChAP results are compared to other data, such as the CAMS reanalysis, EMEP MSC-W, and individual model simulations. Our model reasonably reproduces characteristics of the tropospheric sulfur cycle known from these information sources. In our scheme, about half of the emitted sulfur dioxide is deposited to the surface, and the rest is oxidised into sulfates. In turn, sulfates are mostly removed from the atmosphere by wet deposition. The lifetimes of the sulfur dioxide and sulfates in the atmosphere are close to 1 and 5 d, respectively. The limitations of the scheme are acknowledged, and the prospects for future development are figured out. Despite its simplicity, ChAP may be successfully used to simulate anthropogenic sulfur pollution in the atmosphere at coarse spatial scales and timescales.


2011 ◽  
Vol 6 ◽  
pp. 216-221
Author(s):  
Sönke Zaehle ◽  
Colin Prentice ◽  
Sarah Cornell

2015 ◽  
Vol 8 (4) ◽  
pp. 3235-3292 ◽  
Author(s):  
A. L. Atchley ◽  
S. L. Painter ◽  
D. R. Harp ◽  
E. T. Coon ◽  
C. J. Wilson ◽  
...  

Abstract. Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. However, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth System Models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth System Models challenge validation and parameterization of hydrothermal models. A recently developed surface/subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurements to calibrate and identify fine scale controls of ALT in ice wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze/thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g. troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.


Climate ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 72
Author(s):  
Xing Yi ◽  
Birgit Hünicke ◽  
Eduardo Zorita

Arabian Sea upwelling in the past has been generally studied based on the sediment records. We apply two earth system models and analyze the simulated water vertical velocity to investigate coastal upwelling in the western Arabian Sea over the last millennium. In addition, two models with slightly different configurations are also employed to study the upwelling in the 21st century under the strongest and the weakest greenhouse gas emission scenarios. With a negative long-term trend caused by the orbital forcing of the models, the upwelling over the last millennium is found to be closely correlated with the sea surface temperature, the Indian summer Monsoon and the sediment records. The future upwelling under the Representative Concentration Pathway (RCP) 8.5 scenario reveals a negative trend, in contrast with the positive trend displayed by the upwelling favorable along-shore winds. Therefore, it is likely that other factors, like water stratification in the upper ocean layers caused by the stronger surface warming, overrides the effect from the upwelling favorable wind. No significant trend is found for the upwelling under the RCP2.6 scenario, which is likely due to a compensation between the opposing effects of the increase in upwelling favorable winds and the water stratification.


2012 ◽  
Vol 25 (19) ◽  
pp. 6646-6665 ◽  
Author(s):  
John P. Dunne ◽  
Jasmin G. John ◽  
Alistair J. Adcroft ◽  
Stephen M. Griffies ◽  
Robert W. Hallberg ◽  
...  

Abstract The physical climate formulation and simulation characteristics of two new global coupled carbon–climate Earth System Models, ESM2M and ESM2G, are described. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory’s previous Climate Model version 2.1 (CM2.1) while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4p1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in El Niño–Southern Oscillation being overly strong in ESM2M and overly weak in ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to total heat content variability given its lack of long-term drift, gyre circulation, and ventilation in the North Pacific, tropical Atlantic, and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to surface circulation given its superior surface temperature, salinity, and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. The overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon–climate models.


Sign in / Sign up

Export Citation Format

Share Document