Processing of GRACE FO satellite to satellite tracking data using the GRACE SIGMA software

2020 ◽  
Author(s):  
Mathias Duwe ◽  
Igor Koch ◽  
Jakob Flury ◽  
Akbar Shabanloui

<p>At our Institute we compute monthly gravity potential solutions from GRACE/GRACE-FO level 1B data by using the variational equations approach. The gravity field is recovered with our own MATLAB software "GRACE-SIGMA" that was recently updated in order to reduce the calculation time with parallel computing approach by approx. 80%. Also the processing chain has changed to update the background modeling and we made tests with different orbit types and different parametrizations. We discuss progress to include laser ranging interferometer data in gravity field solutions. We present validation results and analyze the properties of postfit range-rate residuals.</p>

2021 ◽  
Author(s):  
William Desprats ◽  
Daniel Arnold ◽  
Michel Blanc ◽  
Adrian Jäggi ◽  
Mingtao Li ◽  
...  

<p>The exploration of Callisto is part of the extensive interest in the icy moons characterization. Indeed, Callisto is the Galilean moon with the best-preserved records of the Jovian system formation. Led by the National Space Science Center (NSSC), Chinese Academy of Science (CAS), the planned Gan De mission aims to send an orbiter around Callisto in order to characterize its surface and interior. Potential orbit configurations are currently under study for the Gan De mission proposal.</p><p>As part of a global characterization of Callisto, its gravity field can be inferred using radio tracking data from an orbiter. Mission characteristics such as orbit type, Earth beta angle and solar elongation will have a direct influence on the recoverability of its gravity field parameters. In this study, we will analyse this influence from closed-loop simulations using the planetary extension of the Bernese GNSS Softwareai.</p><p>A number of reference orbits with different orbital characteristics will be selected for the Gan De mission and, using an extended force model, will be propagated from different starting dates and different initial Earth beta angles. Realistic Doppler tracking data (2-way X-band Doppler range rate) will be simulated as measurements from ground stations, with a dedicated noise model. These observations will then be used to reconstruct the orbit along with dynamical parameters. The focus of this presentation will be on the quality of the retrieved gravity field parameters and tidal Love number k2.</p>


2006 ◽  
Vol 49 (3) ◽  
pp. 651-656 ◽  
Author(s):  
Xu-Hua ZHOU ◽  
Houtse HSU ◽  
Bin WU ◽  
Bi-Bo PENG ◽  
Yang LU

The idea of tracking one spacecraft from another grew out of some tracking studies performed early in the Apollo programme (1962-3). The main practical advantage of such a technique is that ( a ) contact time with a low orbiting spacecraft can be increased considerably (approximately 50 min v . 5 min for a single ground station); ( b ) the number of ground stations can be reduced; ( c ) the dependency on stations on foreign soil can almost be eliminated; and ( d ) detailed studies of spacecraft motions due to small variations in the Earth’s gravity field (anomalies) may be detectable. This paper describes specifically two satellite-to-satellite tracking (s. s. t.) tests, namely ( a ) the ATS-6/Geos-3 and ( b ) the ATS-6/Apollo-Soyuz experiment and some of the results obtained. The main purpose of these two experiments was first to track via ATS-6 the Geos-3 as well as the Apollo-Soyuz and to use these tracking data to determine ( a ) both orbits, that is, ATS-6, Geos-3 and/or the Apollo-Soyuz orbits at the same time; ( b ) each of these orbits alone, and ( c ) test the ATS-6/Geos-3 and /or Apollo-Soyuz s. s. t. link to study local gravity anomalies; and, second, to test communications, command and data transmission from the ground via ATS-6 to these spacecraft and back again to the ground (Rosman, N. G.). Most of the interesting data obtained to date originate from the Apollo-Soyuz geodynamics experiment. Thus, it will be discussed in some detail. Gravity anomalies of say 3-5 mGal (3-5 × 10 -5 m s -2 ) or larger having wavelength of 500-1000 km on the Earth’s surface are important for studies of the upper layers of the earth. Such anomalies were actually ‘seen’ for the first time from space as signatures in the form of very small variation (order of ~ 1 to 2 cm/s) in the range rate between ATS-6, Geos-3 and Apollo-Soyuz. Since the measured range noise turned out to be only 0.03- 0.05 cm/s on the average, these signatures were detected with an excellent signal-to-noise ratio. Orbit determination examples using s. s. t. data from ATS-6 and Geos-3 are also discussed in detail together with errors associated with the orbits of Geos-3. Further, signature studies and gravity anomaly detections with s. s. t. data will be shown and discussed in detail.


2020 ◽  
Author(s):  
Saniya Behzadpour ◽  
Andreas Kvas ◽  
Torsten Mayer-Gürr

<p class="western" align="justify">GRACE-FO carries a Laser Ranging Interferometer (LRI) as a technology demonstration to provide measurements of inter-satellite range changes. This additional measurement technology provides supplementary observations, which improve the reliability of the range rate measurements and allow for a cross-instrument diagnostics and calibration with the K-band ranging (KBR) system.</p> <p class="western" align="justify">We present a two-step approach used for LRI1B data calibration within the ITSG-Grace2018 scheme, which is compatible with the entire v04 release timespan. The aim of this study is to mitigate the remaining systematics due to the LRI datation time offset and LRI scale factor. We discuss the implementation of calibration parameters and the contribution of the calibration approach to the overall accuracy of gravity field solutions.</p>


Knowledge of long-wavelength features of the geopotential is significantly improved by the use of precision satellite tracking with lasers. Tracking data on nine satellites are combined with terrestrial gravimetry to obtain a spherical-harmonics representation of the geopotential complete through degree and order 24. An improved gravity-field model provides better satellite ephemerides and a reference for analysing satellite-to-sea-surface altimetry.


Geosciences ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 350 ◽  
Author(s):  
Neda Darbeheshti ◽  
Florian Wöske ◽  
Matthias Weigelt ◽  
Christopher Mccullough ◽  
Hu Wu

This paper introduces GRACETOOLS, the first open source gravity field recovery tool using GRACE type satellite observations. Our aim is to initiate an open source GRACE data analysis platform, where the existing algorithms and codes for working with GRACE data are shared and improved. We describe the first release of GRACETOOLS that includes solving variational equations for gravity field recovery using GRACE range rate observations. All mathematical models are presented in a matrix format, with emphasis on state transition matrix, followed by details of the batch least squares algorithm. At the end, we demonstrate how GRACETOOLS works with simulated GRACE type observations. The first release of GRACETOOLS consist of all MATLAB M-files and is publicly available at Supplementary Materials.


Sign in / Sign up

Export Citation Format

Share Document