scholarly journals Shallow water table effects on water, sediment and pesticide transport in vegetative filter strips: Part B. model coupling, application, factor importance and uncertainty

Author(s):  
Claire Lauvernet ◽  
Rafael Muñoz-Carpena

Abstract. Vegetative filter strips are often used for protecting surface waters from pollution transferred by surface runoff in agricultural watersheds. In Europe, they are often prescribed along the stream banks, where a seasonal shallow water table (WT) could decrease the buffer zone efficiency. In spite of this potentially important effect, there are no systematic experimental or theoretical studies on the effect of this soil boundary condition on the VFS efficiency. In the companion paper, we developed a physically-based numerical algorithm (SWINGO) that allows representing soil infiltration with a shallow water table. Here we present the dynamic coupling of SWINGO with VFSMOD, an overland flow and transport mathematical model to study the WT influence on VFS efficiency in terms of reductions of overland flow, sediment and pesticide transport. This new version of VFSMOD was evaluated with two contrasted benchmark field studies in France (sandy-loam soil under Mediterranean semi-continental climate, and silty-clay under temperate Oceanic climate), where testing of the model with field data showed promising results. The analysis showed that for the conditions of the studies, VFS efficiency decreases markedly when the water table is 0 to 1.5 m from the surface. In order to evaluate the relative importance of WT among other input factors controlling VFS efficiency, two global sensitivity and uncertainty analysis (GSA) methods, Morris and eFAST, were applied on the benchmark studies. The most important factors found for VFS overland flow reduction were saturated hydraulic conductivity and WT, added to sediment characteristics and VFS dimensions for sediment and pesticide reductions. The relative importance of WT varied as a function of soil type (most important at the silty-clay soil) and hydraulic loading (rainfall + incoming runoff) at each site. The presence of WT introduced more complex responses dominated by strong interactions in the modelled system response, reducing the predominance of saturated hydraulic conductivity on infiltration under typical deep water table conditions. This study demonstrates that when present, WT should be considered as a key hydrologic factor in buffer design and evaluation as a water quality mitigation practice.

2018 ◽  
Vol 22 (1) ◽  
pp. 71-87 ◽  
Author(s):  
Claire Lauvernet ◽  
Rafael Muñoz-Carpena

Abstract. Vegetative filter strips are often used for protecting surface waters from pollution transferred by surface runoff in agricultural watersheds. In Europe, they are often prescribed along the stream banks, where a seasonal shallow water table (WT) could decrease the buffer zone efficiency. In spite of this potentially important effect, there are no systematic experimental or theoretical studies on the effect of this soil boundary condition on the VFS efficiency. In the companion paper (Muñoz-Carpena et al., 2018), we developed a physically based numerical algorithm (SWINGO) that allows the representation of soil infiltration with a shallow water table. Here we present the dynamic coupling of SWINGO with VFSMOD, an overland flow and transport mathematical model to study the WT influence on VFS efficiency in terms of reductions of overland flow, sediment, and pesticide transport. This new version of VFSMOD was applied to two contrasted benchmark field studies in France (sandy-loam soil in a Mediterranean semicontinental climate, and silty clay in a temperate oceanic climate), where limited testing of the model with field data on one of the sites showed promising results. The application showed that for the conditions of the studies, VFS efficiency decreases markedly when the water table is 0 to 1.5 m from the surface. In order to evaluate the relative importance of WT among other input factors controlling VFS efficiency, global sensitivity and uncertainty analysis (GSA) was applied on the benchmark studies. The most important factors found for VFS overland flow reduction were saturated hydraulic conductivity and WT depth, added to sediment characteristics and VFS dimensions for sediment and pesticide reductions. The relative importance of WT varied as a function of soil type (most important at the silty-clay soil) and hydraulic loading (rainfall + incoming runoff) at each site. The presence of WT introduced more complex responses dominated by strong interactions in the modeled system response, reducing the typical predominance of saturated hydraulic conductivity on infiltration under deep water table conditions. This study demonstrates that when present, the WT should be considered as a key hydrologic factor in buffer design and evaluation as a water quality mitigation practice.


2018 ◽  
Vol 22 (1) ◽  
pp. 53-70 ◽  
Author(s):  
Rafael Muñoz-Carpena ◽  
Claire Lauvernet ◽  
Nadia Carluer

Abstract. Vegetation buffers like vegetative filter strips (VFSs) are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in floodplains often results in the presence of a seasonal shallow water table (WT) that can decrease soil infiltration and increase surface pollutant transport during a rainfall-runoff event. Simple and robust components of hydrological models are needed to analyze the impacts of WT in the landscape. To simulate VFS infiltration under realistic rainfall conditions with WT, we propose a generic infiltration solution (Shallow Water table INfiltration algorithm: SWINGO) based on a combination of approaches by Salvucci and Entekhabi (1995) and Chu (1997) with new integral formulae to calculate singular times (time of ponding, shift time, and time to soil profile saturation). The algorithm was tested successfully on five distinct soils, both against Richards's numerical solution and experimental data in terms of infiltration and soil moisture redistribution predictions, and applied to study the combined effects of varying WT depth, soil type, and rainfall intensity and duration. The results show the robustness of the algorithm and its ability to handle various soil hydraulic functions and initial nonponding conditions under unsteady rainfall. The effect of a WT on infiltration under ponded conditions was found to be effectively decoupled from surface infiltration and excess runoff processes for depths larger than 1.2 to 2 m, being shallower for fine soils and shorter events. For nonponded initial conditions, the influence of WT depth also varies with rainfall intensity. Also, we observed that soils with a marked air entry (bubbling pressure) exhibit a distinct behavior with WT near the surface. The good performance, robustness, and flexibility of SWINGO supports its broader use to study WT effects on surface runoff, infiltration, flooding, transport, ecological, and land use processes. SWINGO is coupled with an existing VFS model in the companion paper (Lauvernet and Muñoz-Carpena, 2018), where the potential effects of seasonal or permanent WTs on VFS sediment and pesticide trapping are studied.


2017 ◽  
Author(s):  
Rafael Muñoz-Carpena ◽  
Claire Lauvernet ◽  
Nadia Carluer

Abstract. Vegetation buffers like vegetative filter strips (VFS) are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in bottomland often results in the presence of a seasonal shallow water table (WT) that can decrease soil infiltration and increase surface pollutant transport during a rainfall/runoff event. Simple and robust components of hydrological models are needed to analyse the impacts of WT in the landscape. To simulate VFS infiltration under realistic rainfall conditions with WT, we propose a generic infiltration solution (Shallow Water table INfiltration algorithm: SWINGO) based on a combination of approaches by Salvucci and Entekhabi (1995) and Chu (1997) with new integral formulae to calculate singular times (time of ponding, shift time, and time to soil profile saturation). The algorithm was tested successfully on 5 distinct soils both against Richards’s numerical solution and experimental data in terms of infiltration and soil moisture redistribution predictions, and applied to study the combined effects of varying WT depth, soil type, and rainfall intensity and duration. The results show the robustness of the algorithm and its ability to handle various soil hydraulic functions, and initial non-ponding conditions under unsteady rainfall. The effect of a WT on infiltration under ponded conditions was found effectively decoupled from surface infiltration/excess runoff processes for depths larger than 1.2 to 2 m, shallower for fine soils and shorter events. For non-ponded initial conditions, the influence of WT depth also varies with rainfall intensity. Also, we observed that soils with a marked air entry (bubbling pressure) exhibit a distinct behaviour with WT near the surface. The features and good performance of SWINGO support its coupling with an existing VFS model in the companion paper, where the potential effects of seasonal or permanent WTs on VFS pollutant transport and control are studied.


Sign in / Sign up

Export Citation Format

Share Document