scholarly journals On the similarity of hillslope hydrologic function: a process-based approach

2021 ◽  
Author(s):  
Fadji Zaouna Maina ◽  
Haruko M. Wainwright ◽  
Peter James Dennedy-Frank ◽  
Erica R. Siirila-Woodburn

Abstract. Hillslope similarity is an active topic in hydrology because of its importance to improve our understanding of hydrologic processes and enable comparisons and paired studies. In this study, we propose a holistic bottom-up hillslope similarity classification based on a region’s integrative hydrodynamic response quantified by the seasonal changes in groundwater levels. The main advantage of the proposed classification is its ability to describe recharge and discharge processes. We test the performance of the proposed classification by comparing it to seven other common hillslope similarity classifications. These include simple classifications based on the aridity index, topographic wetness index, elevation, land cover, and more sophisticated machine-learning classifications that jointly integrate all these data. We assess the ability of these classifications to identify and categorize hillslopes with similar static characteristics, hydroclimatic behaviors, land surface processes, and subsurface dynamics in a mountainous watershed, the East River, located in the headwaters of the Upper Colorado River Basin. The proposed classification is robust as it reasonably identifies and categorizes hillslopes with similar elevation, land cover, hydroclimate, land surface processes, and subsurface hydrodynamics (and hence hillslopes with similar hydrologic function). In general, the other approaches are good in identifying similarity in a single characteristic, which is usually close to the selected variable. We further demonstrate the robustness of the proposed classification by testing its ability to predict hillslope responses to wet and dry hydrologic conditions, of which it performs well when based on average conditions.

2012 ◽  
Vol 6 (1) ◽  
pp. 33-41 ◽  
Author(s):  
K. V.S. Badarinath ◽  
D. V. Mahalakshmi ◽  
Satyaban Bishoyi Ratna

Land-surface processes are one of the important drivers for weather and climate systems over the tropics. Realistic representation of land surface processes in mesoscale models over the region will help accurate simulation of numerical forecasts. The present study examines the influence of Land Use/ Land Cover Change (LULC) on the forecasting of cyclone intensity and track prediction using Mesoscale Model (MM5). Gridded land use/land cover data set over the Indian region compatible with the MM5 model were generated from Indian Remote Sensing Satellite (IRS-P6) Advanced Wide Field Sensor (AWiFS) for the year 2007-2008. A case study of simulation of ‘Aila’ cyclone has been considered to see the impact of these two sets of LULC data with the use of MM5 model. Results of the study indicated that incorporation of current land use/land cover data sets in mesoscale model provides better forecasting of cyclonic track.


2014 ◽  
Vol 11 (10) ◽  
pp. 12103-12135 ◽  
Author(s):  
S. M. Ambrose ◽  
S. M. Sterling

Abstract. The process of evapotranspiration (ET) plays a critical role in the earth system, driving key land-surface processes in the energy, water and carbon cycles. Land-cover (LC) exerts multiple controls on ET, yet the global distribution of ET by LC and the related physical variables are poorly understood. The lack of quantitative understanding of global ET variation with LC begets considerable uncertainties regarding how ET and key land-surface processes will change alongside ongoing anthropogenic LC transformations. Here we apply statistical analysis and models to a new global ET database to advance our understanding of how annual actual ET varies with LC type. We derive global fields for each LC using linear mixed effect models (LMMs) that use geographical and meteorological variables as possible independent regression variables. Our inventory of ET observations reveals important gaps in spatial coverage that overlie hotpots of global change. There is a spatial bias of observations towards the mid latitudes, and LCs with large areas in the high latitudes (lakes, wetlands and barren land) are poorly represented. From the distribution of points as well as the uncertainty analysis completed by bootstrapping we identify high priority regions in need of more data collection. Our analysis of the new database provides new insights into how ET varies globally, providing more robust estimates of global ET rates for a broad range of LC types. Results reveal that different LC types have distinct global patterns of ET. Furthermore, zonal ET means among LCs reveal new patterns: ET rates in low latitudinal bands are more sensitive to LC change than in higher latitude bands; LCs with a higher evaporation component show higher variability of ET at the global scale; and LCs with dispersed rather than contiguous global locations have a higher variability of ET at the global scale. Results from this study indicate two major advancements are required to improve our ability to predict how ET will vary with global change. First, further collection of ground truth observations of ET is needed to fill gaps in LC types and spatial location identified in this paper. Second, LC types need to be de-aggregated into finer categories to better characterize ET, to reduce uncertainty and weakened strength to predictor variables, associated by aggregation of heterogeneous LC types into one group; this will require the development of higher-resolution LC databases.


2000 ◽  
Vol 38 (1) ◽  
pp. 117-140 ◽  
Author(s):  
Sharon Nicholson

Author(s):  
Paul A. Dirmeyer ◽  
Pierre Gentine ◽  
Michael B. Ek ◽  
Gianpaolo Balsamo

2021 ◽  
Author(s):  
Theertha Kariyathan ◽  
Wouter Peters ◽  
Julia Marshall ◽  
Ana Bastos ◽  
Markus Reichstein

<p>Carbon dioxide (CO<sub>2</sub>) is an important greenhouse gas, and it accounts for about 20% of the present-day anthropogenic greenhouse effect. Atmospheric CO<sub>2</sub> is cycled between the terrestrial biosphere and the atmosphere through various land-surface processes and thus links the atmosphere and terrestrial biosphere through positive and negative feedback. Since multiple trace gas elements are linked by common biogeochemical processes, multi-species analysis is useful for reinforcing our understanding and can help in partitioning CO<sub>2</sub> fluxes. For example, in the northern hemisphere, CO<sub>2</sub> has a distinct seasonal cycle mainly regulated by plant photosynthesis and respiration and it has a distinct negative correlation with the seasonal cycle of the δ<sup>13</sup>C isotope of CO<sub>2</sub>, due to a stronger isotopic fractionation associated with terrestrial photosynthesis. Therefore, multi-species flask-data measurements are useful for the long-term analysis of various green-house gases. Here we try to infer the complex interaction between the atmosphere and the terrestrial biosphere by multi-species analysis using atmospheric flask measurement data from different NOAA flask measurement sites across the northern hemisphere.</p><p>This study focuses on the long-term changes in the seasonal cycle of CO<sub>2</sub> over the northern hemisphere and tries to attribute the observed changes to driving land-surface processes through a combined analysis of the δ<sup>13</sup>C seasonal cycle. For this we generate metrics of different parameters of the CO<sub>2</sub> and δ<sup>13</sup>C seasonal cycle like the seasonal cycle amplitude given by the peak-to-peak difference of the cycle (indicative of the amount of CO<sub>2</sub> taken up by terrestrial uptake),  the intensity of plant productivity inferred from the slope of the seasonal cycle during the growing season , length of growing season and the start of the growing season. We analyze the inter-relation between these metrics and how they change across latitude and over time. We hypothesize that the CO<sub>2 </sub>seasonal cycle amplitude is controlled both by the intensity of plant productivity and period of the active growing season and that the timing of the growing season can affect the intensity of plant productivity. We then quantify these relationships, including their variation over time and latitudes and describe the effects of an earlier start of the growing season on the intensity of plant productivity and the CO<sub>2</sub> uptake by plants.</p>


Sign in / Sign up

Export Citation Format

Share Document