The Open Atmospheric Science Journal
Latest Publications


TOTAL DOCUMENTS

138
(FIVE YEARS 6)

H-INDEX

15
(FIVE YEARS 1)

Published By Bentham Science

1874-2823

2019 ◽  
Vol 13 (1) ◽  
pp. 56-64
Author(s):  
Latifa Saeed Al Blooshi ◽  
Sofyan Alyan ◽  
Ngaina Joshua Joshua ◽  
Taoufik Saleh Ksiksi

Introduction: Changes in climate have impacts on natural and human systems on all continents and across the oceans. Most countries, including the UAE, are expected to experience a huge impact of climate change, due to the undergoing rapid growth and huge urban developments. Materials & Methods: Representative Concentration Pathways, or RCPs, represent the latest generation of scenarios that are used as potential inputs into climate models to show imposed greenhouse-gas concentration pathways during the 21st century. Four emission scenarios have been used for climate research; namely RCP 2.6, RCP 4.5 and RCP 6 and RCP 8.5. RCP 4.5 and RCP 8.5 are used. The aims of this study are to assess different RCPs and their appropriateness to predict temperatures and rainfall and to study the effect of climate change on three different cities in the UAE. Results & Conclusion: The results show a strong correlation between the present Tmax vs Tmax 2020, Tmax 2040, Tmax 2060, Tmax 2080 and Tmax 2095 for both RCP4.5 and RCP8.5. This means that maximum temperatures are going to increase in the coming years based on the predictions according to the different scenarios using MarksimGCMR. Precipitation projections shows greater variation than temperature. In this paper the amount of increase in temperatures and precipitation change is shown for the end of the current century.


2019 ◽  
Vol 13 (1) ◽  
pp. 43-55
Author(s):  
D. O. Akpootu ◽  
A. M. Rabiu

Background:Estimation of tropospheric radio refractivity is significant in the planning and design of terrestrial communication links.Methods:In this study, the monthly average daily atmospheric pressure, relative humidity and temperature data obtained from the National Aeronautics and Space Administration (NASA) during the period of twenty two years (July 1983 - June 2005) for Osogbo (Latitude 7.470N, Longitude 4.290E, and 302.0 m above sea level) were used to estimate the monthly tropospheric radio refractivity. The monthly average daily global solar radiation with other meteorological parameters was used to developed one, two, three and four variable correlation(s) tropospheric radio refractivity models for the location. The accuracy of the proposed models are validated using statistical indicator of coefficient of determination (R2), Mean Bias Error (MBE), Root Mean Square Error (RMSE), Mean Percentage Error (MPE), Nash - Sutcliffe Equation (NSE) and Index of Agreement (IA).Results:In each case one empirical model was recommended based on their exceptional performances after ranking, except for the two variation correlations with two empirical models. The recommended models were further subjected to ranking from which the three variable correlations model that relates the radio refractivity with the absolute temperature, relative humidity and global solar radiation was found more suitable for estimating tropospheric radio refractivity for Osogbo with R2= 100.0%, MBE = -0.2913 N-units, RMSE = 0.3869 N-units, MPE = 0.0811%, NSE = 99.9999% and IA = 100.00%.Conclusion:The newly developed recommended models (Equations 16c, 17d, 17f, 18d and 19) can be used for estimating daily and monthly values of tropospheric radio refractivity with higher accuracy and has good compliance to highly varying climatic conditions for Osogbo and regions of similar climatic information.


2019 ◽  
Vol 13 (1) ◽  
pp. 43-55
Author(s):  
D. O. Akpootu ◽  
A. M. Rabiu

Background:Estimation of tropospheric radio refractivity is significant in the planning and design of terrestrial communication links.Methods:In this study, the monthly average daily atmospheric pressure, relative humidity and temperature data obtained from the National Aeronautics and Space Administration (NASA) during the period of twenty two years (July 1983 - June 2005) for Osogbo (Latitude 7.470N, Longitude 4.290E, and 302.0 m above sea level) were used to estimate the monthly tropospheric radio refractivity. The monthly average daily global solar radiation with other meteorological parameters was used to developed one, two, three and four variable correlation(s) tropospheric radio refractivity models for the location. The accuracy of the proposed models are validated using statistical indicator of coefficient of determination (R2), Mean Bias Error (MBE), Root Mean Square Error (RMSE), Mean Percentage Error (MPE), Nash - Sutcliffe Equation (NSE) and Index of Agreement (IA).Results:In each case one empirical model was recommended based on their exceptional performances after ranking, except for the two variation correlations with two empirical models. The recommended models were further subjected to ranking from which the three variable correlations model that relates the radio refractivity with the absolute temperature, relative humidity and global solar radiation was found more suitable for estimating tropospheric radio refractivity for Osogbo with R2= 100.0%, MBE = -0.2913 N-units, RMSE = 0.3869 N-units, MPE = 0.0811%, NSE = 99.9999% and IA = 100.00%.Conclusion:The newly developed recommended models (Equations 16c, 17d, 17f, 18d and 19) can be used for estimating daily and monthly values of tropospheric radio refractivity with higher accuracy and has good compliance to highly varying climatic conditions for Osogbo and regions of similar climatic information.


2019 ◽  
Vol 13 (1) ◽  
pp. 29-42
Author(s):  
Hussain Alsarraf ◽  
Matthew V.D. Broeke ◽  
Hala Aljassar

Background: The mesoscale circulation over Kuwait is an important influence on changes in surface temperatures and soil temperatures. Introduction: This paper presents two common summertime atmospheric features over Kuwait linking wind circulation to soil temperatures. Methods: In this study, we use the European Centre for Medium-range Weather Forecasts ECMWF reanalysis ERA-Interim dataset to investigate effects of the synoptic scale and mesoscale circulations. Results: The results show that a large-scale pressure gradient in summer typically leads to northerly winds over Kuwait, while a weak synoptic-scale pressure gradient leads to light easterly humid winds from the Persian Gulf, consistent with a mesoscale circulation. Conclusions: The results demonstrate the significance of wind circulations in driving the Soil Temperature (SOILT). Using the Era-Interim/Land reanalysis dataset for August 2015 over Kuwait, the average SOILT on days of sea breeze is higher than the average SOILT on days dominated by a synoptic-scale pressure gradient.


2019 ◽  
Vol 13 (1) ◽  
pp. 13-28 ◽  
Author(s):  
DeVondria D. Reynolds ◽  
Anthony R. Lupo ◽  
Andrew D. Jensen ◽  
Patrick S. Market

Introduction: Some weather extremes are the result of atmospheric blocking, which can be responsible for the stagnation of weather patterns. These large-scale quasi-stationary mid-latitude flow regimes can result in significant temperature and precipitation anomalies over the regions that the blocking event impacts or in the upstream and downstream regions. Methods: The ability to predict periods of anomalous weather conditions due to atmospheric blocking is a major problem for medium-range forecasting. Analyzing the National Centers for Environmental Prediction (NCEP) Ensemble 500-hPa pressure level heights (240 hrs.) ten-day forecasts, and using the University of Missouri blocking archive to identify blocking events, the forecasted onset, duration, and intensity of model blocking events are compared to observed blocks. Results and Discussion: The observed blocking events were identified using the University of Missouri blocking archive. Comparing these differences using four Northern Hemisphere case studies occurring over a one-year period across the Northern Hemisphere has shown the continued need for improvement in the duration and intensity of blocking events. Additionally, a comparison of the block intensity to a diagnostic known as the Integrated Regional Enstrophy (IRE) was performed in order to determine if there is a correlation between IRE and these quantities. Conclusion: Having a better understanding of block persistence and their associated anomalies can help society prepare for the damage they can cause.


2019 ◽  
Vol 13 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Manuel Bravo ◽  
Carlos Villalobos ◽  
Rodrigo Leiva ◽  
Luis Tamblay ◽  
Pedro Vega-Jorquera ◽  
...  

Objective: The diurnal variations of several ionospheric characteristics during the Space Weather Events of 4-10 September 2017, for Chilean latitudes, will be reported. Materials and Methods: Observations were made using a recently installed ionosonde at the Universidad de La Serena field station (29°52'S; 71°15’W). Also, reported is the total electron content determined using the upgraded Chilean network of dual-frequency Global Navigation Satellite Systems (GNSS) receivers. Results: Sudden ionospheric disturbances are described in terms of the minimum reflection frequency determined from ionosonde records. An attempt to derive the extent of the effect on high frequency propagation paths in the region is made using simultaneous ionosonde observations at other locations. The geomagnetic storm ionospheric effects are discussed in detail using the observed diurnal variation of maximum electron concentration (NmF2), virtual height of the F-region (h’F/F2) and Total Electron Content (TEC). These are complemented with the time-latitude variation of TEC for the 70°W meridian. Conclusion: It is found that large increases of NmF2, h’F/F2 and TEC observed during 8 September 2017 storm are well described in terms of the evolution of the Equatorial Ionospheric Anomaly (EIA) over the same time interval. Known physical mechanisms are suggested to explain most of the observations.


2018 ◽  
Vol 12 (1) ◽  
pp. 107-131 ◽  
Author(s):  
Jordan Nielson ◽  
Kiran Bhaganagar

Introduction:Large Eddy Simulation (LES) modelers must begin to answer the question of how to better incorporate large datasets into simulations. This question is important because, at a given location, the diurnal, seasonal, and day-to-day variations of atmospheric stability have significant consequences for the power generated by wind turbines. The following study provides a methodology to obtain discrete values of surface flux, inversion height and geostrophic wind for LES using field data over multiple diurnal cycles (averaged over a month) at 12 Local Time (LT) (during the convective ABL). The methodology will allow the discrete LES to quantify the day-to-day variations over multiple diurnal cycles.Methods:The study tests the hypothesis that LES can capture the mean velocity and TKE profiles from the averaged variations in surface heat flux at 12 LT measured in the field (mean, +1 standard deviation, and -1 standard deviation). The discrete LES from the mean, +1 standard deviation, and -1 standard deviation surface heat flux represent the variations in the ABL due to the day-to-day variations in surface heat flux. The method calculates the surface heat flux for the NREL NWTC M5 dataset. The field data were used to generate Probability Density Functions (PDFs) of surface heat flux for the January and July 12 LT. The PDFs are used to select the surface heat fluxes as inputs into the discrete LES.Results / Conclusion:A correlation function between the surface heat flux and the boundary layer height was determined to select the initial inversion height, and the geostrophic departure function was used to determine the geostrophic wind for each surface heat flux. The LES profiles matched the averaged velocity profiles from the field data to 4% and the averaged TKE profiles to 6% and, therefore, validated the methodology. The method allows for further quantification of day-to-day stability variations using LES.


2018 ◽  
Vol 12 (1) ◽  
pp. 80-106
Author(s):  
Sigalit Berkovic ◽  
Pinhas Alpert

Objective:This research is dedicated to the study of the feasibility of surface wind downscaling from 925 or 850 hPa winds according to synoptic class, season and hour.Methods:Two aspects are examined: low tropospheric wind veering and wind speed correlation and verification of the ERA-Interim analysis wind by comparison to radiosonde data at Beit Dagan, a station on the Israeli coast.Results:Relatively small (< 60°) cross angles between the 1000 hPa wind vector and the 925 hPa or 850 hPa wind vector at 12Z and high correlation (0.6-0.8) between the wind speed at the two levels were found only under winter lows. Relatively small cross angles and small wind speed correlation were found under highs to the west and Persian troughs.The verification of ERA-Interim analysis in comparison with radiosonde data has shown good prediction of wind direction at 12Z at 1000, 925 and 850 hPa levels (RMSE 20°-60°) and lower prediction quality at 1000 hPa at 0Z (RMSE 60°-90°). The analysis under-predicts the wind speed, especially at 1000 hPa. The wind speed RMSE is 1-2 m/s, except for winter lows with 2-3 m/s RMSE at 0Z, 12Z at all levels.Conclusion:Inference of surface wind may be possible at 12Z from 925 or 825 hPa winds under winter lows. Inference of wind direction from 925 hPa winds may be possible under highs to the west and Persian troughs. Wind speed should be inferred by interpolation, according to historical data of measurements or high resolution model.


2018 ◽  
Vol 12 (1) ◽  
pp. 58-79
Author(s):  
Thomas A. Andretta

Background:The 26 December 2003 snowstorm was a rare and long-lived weather system that affected east Idaho. Light snow began falling Christmas night, became steadier and heavier during the next day, and tapered off during the morning on the 27th. Snowfall estimates of 20.3-38.1 cm (8.0-15.0 in) were observed over a 24-hour period on 26 December 2003 in the lower part of the Snake River Plain, paralyzing local communities and transportation centers with snowdrifts and poor visibilities.Methods:The Weather Research and Forecasting Unified Environmental Modeling System was used to conduct a sensitivity study of five precipitation microphysics schemes at two grid scales during the event.Results:A comparison of the model accumulated total grid scale precipitation at 12-km and 4-km scales with the observed precipitation at several stations in the lower plain, indicated small negative biases (underprediction) in all of the schemes. The Purdue-Lin and Weather Research and Forecasting Double-Moment 6-Class microphysics schemes contained the smallest root mean squared errors.Conclusion:The Purdue-Lin and Weather Research and Forecasting Double-Moment 6-Class schemes provided several insights into the dynamics of the snowstorm. A topographic convergence zone, seeder-feeder mechanism, and convective instability were major factors contributing to the heavy snowfall in the lower plain.


2018 ◽  
Vol 12 (1) ◽  
pp. 48-57 ◽  
Author(s):  
Iman Rousta ◽  
Mehdi Doostkamian ◽  
Haraldur Ólafsson ◽  
Hao Zhang ◽  
Sayed Hossein Vahedinejad ◽  
...  

Introduction/ Methods: The current study has compared the fluctuations of atmospheric precipitable water over Iran during three periods of 1948 – 1957, 1958 – 1978, and 1979 – 2012 using upper-air reanalyzed data from NCEP/NCAR. Results: The results indicated that, in all the three periods, average distribution and coefficient of spatial variation decreased with altitude. In contrast, there was a positive relationship between coefficient of spatial variation and altitude. The results of trend analysis showed that atmospheric precipitable water of Iran calculated using the upper-air reanalyzed data by NCEP/NCAR experienced various fluctuations during the three periods of 1948 – 1957, 1958 – 1978, and 1979 – 2012. The increase of the precipitable water during the first period was not significant at the level of 95%. The increase of the precipitable water during the second period was significant at the level of 95% just in 25% of the regions. In contrast to the second period, 70% of the country’s area followed a declining trend. However, this decreasing trend was not significant at the level of 95%, either. Conclusion: The results of Alexandersson statistical method showed that the biggest shift in the average of precipitable water happened during the third period. Overall, variations in the precipitable water over Iran in the past ~60 years are not within the uncertainty of the reanalysis data and are therefore clearly discernible.


Sign in / Sign up

Export Citation Format

Share Document