scholarly journals GIS-BASED MAPPING OF ESTIMATED FLOOD INUNDATION AREA, GEOMETRICAL ASPECT

Author(s):  
E. Panidi ◽  
K. Popova ◽  
V. Tsepelev

<p><strong>Abstract.</strong> A full processing chain for inundation modelling/mapping is implemented in different specialised software like HEC-RAS or Flood Modeller. Alternatively, inundation water level can be estimated separately, and then can be mapped in desktop (universal) Geographic Information System (GIS) software. Last approach can be demanded in a complex already-formed GIS-based mapping processing chains, when inundation area mapping appears only as a step of analysis and mapping technology. This context is usual for cadastral accounting of inundation areas. However, such a processing chain have a lack of computation tools, as currently used desktop GISs (e.g., QGIS, ArcGIS, etc.) capable originally to map only a lake-type inundation areas (certainly, in the case of regular software assembly), while along-the-river inundation should have water surface sloping along the river body.</p> <p>Addressing to the filling the gap of along-the-river inundation mapping in desktop GIS software, we have developed an approach to mapping of river-type inundation area, and implemented it in a test mode to support cadastral accounting of river flood inundation areas. The approach is based upon geometrical modelling of the water surface only, and is not concerned with consideration of hydrogeological conditions and ground water regime. Being simplified, this technique may be rough tool for the cases when hydrogeological aspect have to be respected, however it is simple for implementation and is useful when estimating topography impact only.</p>

2016 ◽  
Vol 49 (12) ◽  
pp. 981-993 ◽  
Author(s):  
Minkwan Oh ◽  
Dongryul Lee ◽  
Hyunhan Kwon ◽  
Dongkyun Kim

Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 896
Author(s):  
Thanh Thu Nguyen ◽  
Makoto Nakatsugawa ◽  
Tomohito J. Yamada ◽  
Tsuyoshi Hoshino

This study aims to evaluate the change in flood inundation in the Chitose River basin (CRB), a tributary of the Ishikari River, considering the extreme rainfall impacts and topographic vulnerability. The changing impacts were assessed using a large-ensemble rainfall dataset with a high resolution of 5 km (d4PDF) as input data for the rainfall–runoff–inundation (RRI) model. Additionally, the prediction of time differences between the peak discharge in the Chitose River and peak water levels at the confluence point intersecting the Ishikari River were improved compared to the previous study. Results indicate that due to climatic changes, extreme river floods are expected to increase by 21–24% in the Ishikari River basin (IRB), while flood inundation is expected to be severe and higher in the CRB, with increases of 24.5, 46.5, and 13.8% for the inundation area, inundation volume, and peak inundation depth, respectively. Flood inundation is likely to occur in the CRB downstream area with a frequency of 90–100%. Additionally, the inundation duration is expected to increase by 5–10 h here. Moreover, the short time difference (0–10 h) is predicted to increase significantly in the CRB. This study provides useful information for policymakers to mitigate flood damage in vulnerable areas.


Author(s):  
Taisei SEKIMOTO ◽  
Satoshi WATANABE ◽  
Shunji KOTSUKI ◽  
Masafumi YAMADA ◽  
Shiori ABE ◽  
...  

2020 ◽  
Vol 591 ◽  
pp. 125755
Author(s):  
Sarah L. Collins ◽  
Vasileios Christelis ◽  
Christopher R. Jackson ◽  
Majdi M. Mansour ◽  
David M.J. Macdonald ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document