scholarly journals Application of Levy Processes in Modelling (Geodetic) Time Series With Mixed Spectra - Response to RC1

2020 ◽  
Author(s):  
Jean-Philippe Montillet
2021 ◽  
Vol 28 (1) ◽  
pp. 121-134
Author(s):  
Jean-Philippe Montillet ◽  
Xiaoxing He ◽  
Kegen Yu ◽  
Changliang Xiong

Abstract. Recently, various models have been developed, including the fractional Brownian motion (fBm), to analyse the stochastic properties of geodetic time series together with the estimated geophysical signals. The noise spectrum of these time series is generally modelled as a mixed spectrum, with a sum of white and coloured noise. Here, we are interested in modelling the residual time series after deterministically subtracting geophysical signals from the observations. This residual time series is then assumed to be a sum of three stochastic processes, including the family of Lévy processes. The introduction of a third stochastic term models the remaining residual signals and other correlated processes. Via simulations and real time series, we identify three classes of Lévy processes, namely Gaussian, fractional and stable. In the first case, residuals are predominantly constituted of short-memory processes. The fractional Lévy process can be an alternative model to the fBm in the presence of long-term correlations and self-similarity properties. The stable process is here restrained to the special case of infinite variance, which can be only satisfied in the case of heavy-tailed distributions in the application to geodetic time series. Therefore, the model implies potential anxiety in the functional model selection, where missing geophysical information can generate such residual time series.


2019 ◽  
Author(s):  
Jean-Philippe Montillet ◽  
Xiaoxing He ◽  
Kegen Yu

Abstract. Recently, various models have been developed, including the fractional Brownian motion (fBm), to analyse the stochastic properties of geodetic time series, together with the extraction of geophysical signals. The noise spectrum of these time series is generally modeled as a mixed spectrum, with a sum of white and coloured noise. Here, we are interested in modelling the residual time series, after deterministically subtracting geophysical signals from the observations. This residual time series is then assumed to be a sum of three random variables (r.v.), with the last r.v. belonging to the family of Levy processes. This stochastic term models the remaining residual signals and other correlated processes. Via simulations and real time series, we identify three classes of Levy processes: Gaussian, fractional and stable. In the first case, residuals are predominantly constituted of short-memory processes. Fractional Levy process can be an alternative model to the fBm in the presence of long-term correlations and self-similarity property. Stable process is characterized by a large variance, which can be satisfied in the case of heavy-tailed distributions. The application to geodetic time series implies potential anxiety in the functional model selection where missing geophysical information can generate such residual time series.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Ostap Okhrin

AbstractThe paper uses Lévy processes and bivariate Lévy copulae in order to model the behavior of intraday log-returns. Based on assumptions about the form of marginal tail integrals and a Clayton Lévy copula, the model allows for capturing intraday cross-dependency. The model is applied to VaR of the portfolios constructed on stock returns as well as on cryptocurrencies. The proposed method shows fair performance compared to classical time series models.


2020 ◽  
Author(s):  
Jean-Philippe Montillet ◽  
Xiaoxing He ◽  
Kegen Yu ◽  
Changliang Xiong

Abstract. Recently, various models have been developed, including the fractional Brownian motion (fBm), to analyse the stochastic properties of geodetic time series, together with the estimated geophysical signals. The noise spectrum of these time series is generally modelled as a mixed spectrum, with a sum of white and coloured noise. Here, we are interested in modelling the residual time series, after deterministically subtracting geophysical signals from the observations. This residual time series is then assumed to be a sum of three stochastic processes, including the family of Lévy processes. The introduction of a third stochastic term models the remaining residual signals and other correlated processes. Via simulations and real time series,we identify three classes of Lévy processes: Gaussian, fractional and stable. In the first case, residuals are predominantly constituted of short-memory processes. Fractional Lévy process can be an alternative model to the fBm in the presence of long-term correlations and self-similarity property. Stable process is here restrained to the special case of infinite variance, which can be only satisfied in the case of heavy-tailed distributions in the application to geodetic time series. Therefore, it implies potential anxiety in the functional model selection where missing geophysical information can generate such residual time series.


2010 ◽  
Vol 13 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Ernst Eberlein ◽  
Dilip Madan

Sign in / Sign up

Export Citation Format

Share Document