scholarly journals Application of ensemble transform data assimilation methods for parameter estimation in nonlinear problems

2020 ◽  
Author(s):  
Sangeetika Ruchi ◽  
Svetlana Dubinkina ◽  
Jana de Wiljes

Abstract. Identification of unknown parameters on the basis of partial and noisy data is a challenging task in particular in high dimensional and nonlinear settings. Gaussian approximations to the problem, such as ensemble Kalman inversion, tend to be robust, computationally cheap and often produce astonishingly accurate estimations despite the inherently wrong underlying assumptions. Yet there is a lot of room for improvement specifically regarding the description of the associated statistics. The tempered ensemble transform particle filter is an adaptive sequential Monte Carlo method, where resampling is based on optimal transport mapping. Unlike ensemble Kalman inversion it does not require any assumptions regarding the posterior distribution and hence has shown to provide promising results for non-linear non-Gaussian inverse problems. However, the improved accuracy comes with the price of much higher computational complexity and the method is not as robust as the ensemble Kalman inversion in high dimensional problems. In this work, we add an entropy inspired regularisation factor to the underlying optimal transport problem that allows to considerably reduce the high computational cost via Sinkhorn iterations. Further, the robustness of the method is increased via an ensemble Kalman inversion proposal step before each update of the samples, which is also referred to as hybrid approach. The promising performance of the introduced method is numerically verified by testing it on a steady-state single-phase Darcy flow model with two different permeability configurations. The results are compared to the output of ensemble Kalman inversion, and Markov Chain Monte Carlo methods results are computed as a benchmark.

2021 ◽  
Vol 28 (1) ◽  
pp. 23-41
Author(s):  
Sangeetika Ruchi ◽  
Svetlana Dubinkina ◽  
Jana de Wiljes

Abstract. Identification of unknown parameters on the basis of partial and noisy data is a challenging task, in particular in high dimensional and non-linear settings. Gaussian approximations to the problem, such as ensemble Kalman inversion, tend to be robust and computationally cheap and often produce astonishingly accurate estimations despite the simplifying underlying assumptions. Yet there is a lot of room for improvement, specifically regarding a correct approximation of a non-Gaussian posterior distribution. The tempered ensemble transform particle filter is an adaptive Sequential Monte Carlo (SMC) method, whereby resampling is based on optimal transport mapping. Unlike ensemble Kalman inversion, it does not require any assumptions regarding the posterior distribution and hence has shown to provide promising results for non-linear non-Gaussian inverse problems. However, the improved accuracy comes with the price of much higher computational complexity, and the method is not as robust as ensemble Kalman inversion in high dimensional problems. In this work, we add an entropy-inspired regularisation factor to the underlying optimal transport problem that allows the high computational cost to be considerably reduced via Sinkhorn iterations. Further, the robustness of the method is increased via an ensemble Kalman inversion proposal step before each update of the samples, which is also referred to as a hybrid approach. The promising performance of the introduced method is numerically verified by testing it on a steady-state single-phase Darcy flow model with two different permeability configurations. The results are compared to the output of ensemble Kalman inversion, and Markov chain Monte Carlo methods results are computed as a benchmark.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Kai Xu ◽  
Yiwen Wang ◽  
Fang Wang ◽  
Yuxi Liao ◽  
Qiaosheng Zhang ◽  
...  

Sequential Monte Carlo estimation on point processes has been successfully applied to predict the movement from neural activity. However, there exist some issues along with this method such as the simplified tuning model and the high computational complexity, which may degenerate the decoding performance of motor brain machine interfaces. In this paper, we adopt a general tuning model which takes recent ensemble activity into account. The goodness-of-fit analysis demonstrates that the proposed model can predict the neuronal response more accurately than the one only depending on kinematics. A new sequential Monte Carlo algorithm based on the proposed model is constructed. The algorithm can significantly reduce the root mean square error of decoding results, which decreases 23.6% in position estimation. In addition, we accelerate the decoding speed by implementing the proposed algorithm in a massive parallel manner on GPU. The results demonstrate that the spike trains can be decoded as point process in real time even with 8000 particles or 300 neurons, which is over 10 times faster than the serial implementation. The main contribution of our work is to enable the sequential Monte Carlo algorithm with point process observation to output the movement estimation much faster and more accurately.


2019 ◽  
Vol 67 (16) ◽  
pp. 4177-4188 ◽  
Author(s):  
Christian A. Naesseth ◽  
Fredrik Lindsten ◽  
Thomas B. Schon

Sign in / Sign up

Export Citation Format

Share Document