scholarly journals Improving subduction interface implementation in dynamic numerical models

2019 ◽  
Author(s):  
Dan Sandiford ◽  
Louis Moresi

Abstract. This study focuses on methodological issues related to dynamic subduction zone modelling. Numerical models often employ an entrained weak layer (WL approach) to facilitate decoupling between the subducting and overriding plates. In such a setup, the kinematics of the flow lead to width variations in the subduction interface. When a uniform-width interface is prescribed, a transient evolution of the interface thickness occurs, during which the volmetric flux along the interface profile establishes equilibrium. Width variations can exceed 4× during this stage, which may impact the effective strength of the interface, both through physical effects if the rheology is linear, and numerical effects if the fault becomes poorly resolved. This transient process induces strong sensitivity to model resolution, and may present a significant challenge to reproducibility. Developing more robust ways to model the subduction interface will enable fully dynamic models to address sensitive subduction-zone processes, such as metamorphism near the slab top. In this study we discuss a simple strategy aimed at improving the standard WL approach. By prescribing a variable thickness weak layer at the outset of the model, and by controlling the limits of the layer thickness during the model evolution, we find improved stability and resolution convergence of the models.

Solid Earth ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 969-985 ◽  
Author(s):  
Dan Sandiford ◽  
Louis Moresi

Abstract. Numerical subduction models often implement an entrained weak layer (WL) to facilitate decoupling of the slab and upper plate. This approach is attractive in its simplicity, and can provide stable, asymmetric subduction systems that persist for many tens of millions of years. In this study we undertake a methodological analysis of the WL approach, and use these insights to guide improvements to the implementation. The issue that primarily motivates the study is the emergence of significant spatial and temporal thickness variations within the WL. We show that these variations are mainly the response to volumetric flux gradients, caused by the change in boundary conditions as the WL material enters and exits the zone of decoupling. The time taken to reach a quasi-equilibrium thickness profile will depend on the total plate convergence, and is around 7 Myr for the models presented here. During the transient stage, width variations along the WL can exceed 4×, which may impact the effective strength of the interface, through physical effects if the rheology is linear, or simply if the interface becomes inadequately numerically resolved. The transient stage also induces strong sensitivity to model resolution. By prescribing a variable-thickness WL at the outset of the model, and by controlling the limits of the layer thickness during the model evolution, we find improved stability and resolution convergence of the models.


Solid Earth ◽  
2012 ◽  
Vol 3 (2) ◽  
pp. 293-306 ◽  
Author(s):  
V. Magni ◽  
J. van Hunen ◽  
F. Funiciello ◽  
C. Faccenna

Abstract. Continental collision is an intrinsic feature of plate tectonics. The closure of an oceanic basin leads to the onset of subduction of buoyant continental material, which slows down and eventually stops the subduction process. In natural cases, evidence of advancing margins has been recognized in continental collision zones such as India-Eurasia and Arabia-Eurasia. We perform a parametric study of the geometrical and rheological influence on subduction dynamics during the subduction of continental lithosphere. In our 2-D numerical models of a free subduction system with temperature and stress-dependent rheology, the trench and the overriding plate move self-consistently as a function of the dynamics of the system (i.e. no external forces are imposed). This setup enables to study how continental subduction influences the trench migration. We found that in all models the slab starts to advance once the continent enters the subduction zone and continues to migrate until few million years after the ultimate slab detachment. Our results support the idea that the advancing mode is favoured and, in part, provided by the intrinsic force balance of continental collision. We suggest that the advance is first induced by the locking of the subduction zone and the subsequent steepening of the slab, and next by the sinking of the deepest oceanic part of the slab, during stretching and break-off of the slab. These processes are responsible for the migration of the subduction zone by triggering small-scale convection cells in the mantle that, in turn, drag the plates. The amount of advance ranges from 40 to 220 km and depends on the dip angle of the slab before the onset of collision.


2021 ◽  
Author(s):  
Meng Li ◽  
Casper Pranger ◽  
Ylona van Dinther

<p>Numerical models are well-suited to overcome limited spatial-temporal observations to understand earthquake sequences, which is fundamental to ultimately better assess seismic hazard. However, high-resolution numerical models in 3D are computationally time and memory consuming. This is not optimal if the aspects of lateral or depth variations within the results are not needed to answer a particular objective. In this study we quantify and summarize the limitations and advantages for simulating earthquake sequences in all spatial dimensions.</p><p> </p><p>We simulate earthquake sequences on a strike-slip fault with rate-and-state friction from 0D to 3D using both quasi-dynamic and fully dynamic approaches. This cross-dimensional comparison is facilitated by our newly developed, flexible code library <em>Garnet</em>, which adopts a finite difference method with a fully staggered grid. We have validated our models using problems BP1-QD & FD and BP4-QD & FD of the SEAS (Sequences of Earthquakes and Aseismic Slip) benchmarks from the Southern California Earthquake Center.</p><p> </p><p>Our results demonstrate that lower-dimensional/quasi-dynamic models are qualitatively similar in terms of earthquake cycle characteristics to their higher-dimensional/fully-dynamic counterparts, while they could be hundreds to millions times faster at the same time. Quantitatively, we observe that certain earthquake parameters, such as stress drop and fracture energy release, can be accurately reproduced in each of these simpler models as well. However, higher dimensional models generally produce lower maximum slip velocities and hence longer coseismic durations. This is mainly due to lower rupture speeds, which result from increased energy consumption along added rupture front directions. In the long term, higher dimensional models produce shorter recurrence interval and hence smaller total slip, which is mainly caused by the higher interseismic stress loading rate inside the nucleation zone. The same trend is also observed when comparing quasi-dynamic models to fully dynamic ones. We extend a theoretical calculation that to first order approximates the aforementioned physical observables in 3D to all other dimensions. These theoretical considerations confirm the same trend as what is observed for stress drop, recurrence interval and total slip across dimensions. These findings on similarities and differences of different dimensional models and a corresponding quantification of computational efficiency can guide model design and facilitate result interpretation in future studies.</p>


Sign in / Sign up

Export Citation Format

Share Document