equilibrium thickness
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 5)

H-INDEX

15
(FIVE YEARS 1)

Author(s):  
A.Yu. Popovskii ◽  
B.A. Altoiz ◽  
A.F. Butenko ◽  
A.K. Kopeyka ◽  
Laurencas Raslavicius

The lubricating characteristics of ultrathin interlayers of bio-oil RMO made from coastal algae P.Moriformis are investigated in this work. One of the most important qualities of the oil is its lubricity of the friction surfaces. It determines the possibility of formation of a stable separating film between contact surfaces, with orientational ordering in wall adjacent layers, with the strength value required in the boundary friction regime. The structural characteristics of such epitropic-liquid crystal (ELC) layers are essential when choosing a lubricant. Static friction pair was studied by the optical method of admixtured absorption dichroism. It was found that the value of the order parameter of ELC layer and its equilibrium thickness are much higher in compare with the layers of aliphatic hydrocarbons, which are the basis of modern mineral lubricants. The rheological characteristics of ultrathin interlayers were studied in a dynamic triad of friction. Processing of the effective viscosity coefficient dependence on the shear rate, interlayer thickness and temperature allowed us to estimate the value of equilibrium thickness of the ELC layer, which coincides with the results of optical measurements. The marked structural peculiarities of the ELC in the biooil interlayers are conditioned with the formation of molecular associates of oleic acid, which is the main component of studied oil.


2021 ◽  
Vol 9 (2B) ◽  
Author(s):  
Marcos Bertrand De Azevedo

The present work reports an experimental study of developed liquid films falling around single Taylor bubbles inside vertical tubes containing stagnant liquids. Experiments were carried out in acrylic tubes with 2.0 m length and inner diameters of 0.019, 0.024 and 0.034 m. Five water-glycerin mixtures were used, corresponding to film Reynolds number(Ref)ranging from 2 to 7650. A pulse-echo ultrasonic technique was applied to measure the rise velocity of the bubble and the equilibrium thickness of the liquid film. These parameters together with the calculated standard deviation of the equilibrium film thickness provided information about the development of waves on the gas-liquid interfaces, which could be related with the laminar-turbulent transition of liquid films falling around Taylor bubbles. The results indicated that the wave amplitudes increased sharply for Ref> 1000. This value of Ref is in agreement with literature concerning the laminar-turbulent transition for free falling films on vertical surfaces.


2020 ◽  
pp. 121-129
Author(s):  
Sergii Timoshenko ◽  
Mikhail Gubinskij

Analysis of recent research and publications. The problems of thermal state of billet-type bottom electrode (BE) in liquid bath of DC electric arc furnace (EAF) are associated with limited thermal conductivity of the rod in the absence of available alternative to copper-steel pair. There isn’t enough data on values of convective and Joule components of heat flux, passing through BE, initiated by electrovortex flows (EVF); regarding influence of thermophysical characteristics of transition copper-steel zone and cooling rate of BE copper part on the position of phase transition surface of steel part. Problems are considered, especially related to innovative “flat bath” steelmaking technologies, in which the possibilities of dead time pauses for periodic renewal of the BE body due to “EVF-off” are significantly limited.Purpose. To investigate the effect of EVT on the thermal state of bottom electrode and to develop on this base the energy efficient BE solutions.Methodology. Numerical simulations of BE thermal state and an industrial testing of essentials. Findings & Originality. For the first time, the joint effect of EVF, Joule heat, and characteristics of BE transition zone copper – steel on the position and equilibrium thickness of solid steel part of the BE, which determines the energy efficiency of DC EAF operation, was comprehensively studied.Research implications. Numerical simulations of EVF in DC EAF steelmaking bath and heat transfer with a phase transition through BE were carried out. The heat flux density and local EVF velocity in anode well are 1.8–2 MW/m2 and 0.75 m/s, respectively. Equilibrium thickness of solid steel BE part is critically dependent on the width of copper-steel transition zone, should not exceed 20-25 mm. Contribution of Joule component of total thermal load on the BE does not exceed 20%. Intensification of cooling rate above ≥ 20 kW/(m2K) practically doesn’t affect the BE solid steel part thickness.Practical implications. Manufacturing technology of BE with a narrow transition zone by the method of two-stage electro-slag welding of copper on a steel billet, which ensures stable DC EAF operation and increases energy efficiency, has been improved.


Solid Earth ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 969-985 ◽  
Author(s):  
Dan Sandiford ◽  
Louis Moresi

Abstract. Numerical subduction models often implement an entrained weak layer (WL) to facilitate decoupling of the slab and upper plate. This approach is attractive in its simplicity, and can provide stable, asymmetric subduction systems that persist for many tens of millions of years. In this study we undertake a methodological analysis of the WL approach, and use these insights to guide improvements to the implementation. The issue that primarily motivates the study is the emergence of significant spatial and temporal thickness variations within the WL. We show that these variations are mainly the response to volumetric flux gradients, caused by the change in boundary conditions as the WL material enters and exits the zone of decoupling. The time taken to reach a quasi-equilibrium thickness profile will depend on the total plate convergence, and is around 7 Myr for the models presented here. During the transient stage, width variations along the WL can exceed 4×, which may impact the effective strength of the interface, through physical effects if the rheology is linear, or simply if the interface becomes inadequately numerically resolved. The transient stage also induces strong sensitivity to model resolution. By prescribing a variable-thickness WL at the outset of the model, and by controlling the limits of the layer thickness during the model evolution, we find improved stability and resolution convergence of the models.


2015 ◽  
Vol 17 (44) ◽  
pp. 30052-30056 ◽  
Author(s):  
Kirill A. Lozovoy ◽  
Andrey P. Kokhanenko ◽  
Alexander V. Voitsekhovskii

The equilibrium thickness of a wetting layer is calculated with the assumption that the energy of the facets depends upon the 2D-layer thickness.


2009 ◽  
Vol 17 (4) ◽  
pp. 22-27 ◽  
Author(s):  
Jian Luo ◽  
Shen J. Dillon ◽  
Martin P. Harmer

A unique class of impurity-based quasi-liquid films has been widely observed at free surfaces, grain boundaries (GBs), and hetero-phase interfaces in ceramic and metallic materials (Figure 1). These nanometer-thick interfacial films can be alternatively understood to be: (a) quasi-liquid layers that adopt an “equilibrium” thickness in response to a balance of attractive and repulsive interfacial forces (in a high-temperature colloidal theory) or (b) multilayer adsorbates with thickness and average composition set by bulk dopant activities [1–2]. In several model binary systems, such quasi-liquid, interfacial films are found to be thermodynamically stable well below the bulk solidus lines, provoking analogies to the simpler interfacial phenomena of premelting in unary systems [3] and prewetting in binary de-mixed liquids [4]. These interfacial films exhibit structures and compositions that are neither observed nor stable as bulk phases, as well as transport, mechanical, and physical properties that are markedly different from bulk phases.


Sign in / Sign up

Export Citation Format

Share Document