scholarly journals Adaptive stratified importance sampling: hybridization of extrapolation and importance sampling Monte Carlo methods for estimation of wind turbine extreme loads

Author(s):  
Peter Graf ◽  
Katherine Dykes ◽  
Rick Damiani ◽  
Jason Jonkman ◽  
Paul Veers

Abstract. Wind turbine extreme loads estimation is especially difficult because turbulent inflow drives nonlinear turbine physics and control strategies, so there can be huge differences in turbine response to essentially equivalent environmental conditions. The two main current approaches, extrapolation and Monte Carlo sampling, are both unsatisfying: extrapolation-based methods are dangerous because by definition they make predictions outside the range of available data, but Monte Carlo methods converge too slowly to routinely reach the desired 50-year return period estimates. Thus a search for a better method is warranted. Here we introduce an adaptive stratified importance sampling approach that allows for treating the choice of environmental conditions at which to run simulations as a stochastic optimization problem that minimizes the variance of unbiased estimates of extreme loads. Furthermore, the framework, built on the traditional bin-based approach used in extrapolation methods, provides a close connection between sampling and extrapolation, and thus allows the solution of the stochastic optimization (i.e., the optimal distribution of simulations in different wind speed bins) to guide and recalibrate the extrapolation. Results show that indeed this is a promising approach, as the variance of both the Monte Carlo and extrapolation estimates are reduced quickly by the adaptive procedure. We conclude, however, that due to the extreme response variability of turbine loads to the same environmental conditions, our method and any similar method quickly reaches its fundamental limits, and that therefore our efforts going forward are best spent elucidating the underlying causes of the response variability.

2018 ◽  
Vol 3 (2) ◽  
pp. 475-487 ◽  
Author(s):  
Peter Graf ◽  
Katherine Dykes ◽  
Rick Damiani ◽  
Jason Jonkman ◽  
Paul Veers

Abstract. Wind turbine extreme load estimation is especially difficult because turbulent inflow drives nonlinear turbine physics and control strategies; thus there can be huge differences in turbine response to essentially equivalent environmental conditions. The two main current approaches, extrapolation and Monte Carlo sampling, are both unsatisfying: extrapolation-based methods are dangerous because by definition they make predictions outside the range of available data, but Monte Carlo methods converge too slowly to routinely reach the desired 50-year return period estimates. Thus a search for a better method is warranted. Here we introduce an adaptive stratified importance sampling approach that allows for treating the choice of environmental conditions at which to run simulations as a stochastic optimization problem that minimizes the variance of unbiased estimates of extreme loads. Furthermore, the framework, built on the traditional bin-based approach used in extrapolation methods, provides a close connection between sampling and extrapolation, and thus allows the solution of the stochastic optimization (i.e., the optimal distribution of simulations in different wind speed bins) to guide and recalibrate the extrapolation. Results show that indeed this is a promising approach, as the variance of both the Monte Carlo and extrapolation estimates are reduced quickly by the adaptive procedure. We conclude, however, that due to the extreme response variability in turbine loads to the same environmental conditions, our method and any similar method quickly reaches its fundamental limits, and that therefore our efforts going forward are best spent elucidating the underlying causes of the response variability.


Author(s):  
P. Agarwal ◽  
L. Manuel

When interest is in estimating long-term design loads for an offshore wind turbine using simulation, statistical extrapolation is the method of choice. While the method itself is rather well-established, simulation effort can be intractable if uncertainty in predicted extreme loads and efficiency in the selected extrapolation procedure are not specifically addressed. Our aim in this study is to address these questions in predicting blade and tower extreme loads based on stochastic response simulations of a 5 MW offshore turbine. We illustrate the use of the peak-over-threshold method to predict long-term extreme loads. To derive these long-term loads, we employ an efficient inverse reliability approach which is shown to predict reasonably accurate long-term loads when compared to the more expensive direct integration of conditional load distributions for different environmental (wind and wave) conditions. Fundamental to the inverse reliability approach is the issue of whether turbine response variability conditional on environmental conditions is modeled in detail or whether only gross conditional statistics of this conditional response are included. We derive design loads for both these cases, and demonstrate that careful inclusion of response variability not only greatly influences long-term design load predictions but it also identifies different design environmental conditions that bring about these long-term loads compared to when response variability is only approximately modeled. As we shall see, for this turbine, a major source of response variability for both the blade and tower arises from blade pitch control actions due to which a large number of simulations is required to obtain stable distribution tails for the turbine loads studied.


Author(s):  
Thanh Dam Pham ◽  
Junbae Kim ◽  
Byoungcheon Seo ◽  
Rupesh Kumar ◽  
Youngjae Yu ◽  
...  

Abstract A pilot floating offshore wind turbine project of Korea was proposed for installing in the East Sea of Korea. The prototype is a semisubmersible platform supporting a 750-kW wind turbine. A scaled model was tested in the basin tank of the University of Ulsan at scale ratio 1:40. The 750-kW floating offshore wind turbine was modeled by using the NREL-FAST code. Numerical results were validated by comparing with those of the test model. This paper analyzes dynamic responses and loads of the wind turbine system under extreme environmental conditions. Extreme environmental conditions based on metocean data of East Sea Korea. Extreme responses and extreme loads are important data for designing the structure of the 750 kW semi-submersible floating offshore wind turbine.


Author(s):  
Xiaolu Chen ◽  
Zhiyu Jiang ◽  
Qinyuan Li ◽  
Ye Li

Abstract Evaluation of dynamic responses under extreme environmental conditions is important for the structural design of offshore wind turbines. Previously, a modified environmental contour method has been proposed to estimate extreme responses. In the method, the joint distribution of environmental variables near the cut-out wind speed is used to derive the critical environmental conditions for a specified return period, and the turbulence intensity (TI) of wind is assumed to be a deterministic value. To address more realistic wind conditions, this paper considers the turbulence intensity as a stochastic variable and investigates the impact on the modified environmental contour. Aerodynamic simulations are run over a range of mean wind speeds at the hub height from 9–25 m/s and turbulence levels between 9%–15%. Dynamic responses of a monopile offshore wind turbine under extreme conditions were studied, and the importance of considering the uncertainties associated with wind turbulence is highlighted. A case of evaluating the extreme response for 50-year environmental contour is given as an example of including TI as an extra variant in environmental contour method. The result is compared with traditional method in which TI is set as a constant of 15%. It shows that taking TI into consideration based on probabilistic method produces a lower extreme response prediction.


Sign in / Sign up

Export Citation Format

Share Document