scaled model
Recently Published Documents


TOTAL DOCUMENTS

713
(FIVE YEARS 193)

H-INDEX

21
(FIVE YEARS 3)

Aerospace ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 36
Author(s):  
Kelei Wang ◽  
Zhou Zhou

This paper describes the aerodynamic design and assessment of a blended-wing–body (BWB) configuration under the distributed electric propulsion (DEP) installation constraints. The aerodynamic design rationale and process is described, as well as how the DEP system is considered and simplified in the optimization design process. Both the BWB configuration and the DEP induced effects are numerically simulated and analyzed using the Reynolds Averaged Navier–Stokes (RANS) computational fluid dynamics (CFD) flow solvers. To further demonstrate the feasibility and reliability of the design approach, the wind tunnel tests of a scaled model of the designed BWB configuration are carried out, and both the aerodynamic characteristics and the BWB surface flow are measured and analyzed. The results indicate the reliability and feasibility of the optimization design method introduced in this paper.


2022 ◽  
pp. 136943322110523
Author(s):  
Gökhan Çetin ◽  
Mohammed S Fadali ◽  
Gökhan Pekcan

This paper proposes a dissipative resilient observer and controller (DROC) design for a network controlled system (NCS) that handles faults, implementation errors, or cyberattacks that can be modeled as bounded controller or observer gain perturbations. It presents linear matrix inequality (LMI) conditions for the robust stability of the system in the presence of bounded perturbations in the observer and controller. Furthermore, a new LMI-based time-delay control (TDC) algorithm that mitigates the effects of perturbations due to time-delays in the NCS is introduced. The robust methodology is applied to active control of a scaled model of a structural system equipped with an active mass driver system. The results demonstrate that the proposed methodology is robust and ensures stable system response due to various types of earthquake base excitations.


2021 ◽  
Author(s):  
Felipe Vittori ◽  
José Azcona ◽  
Irene Eguinoa ◽  
Oscar Pires ◽  
Alberto Rodríguez ◽  
...  

Abstract. This paper describes the results of a wave tank test campaign of a 1/49 scaled SATH 10MW INNWIND floating platform. The Software-in-the-Loop (SiL) hybrid method was used to include the wind turbine thrust and the in-plane rotor moments My – Mz. Experimental results are compared with a numerical model developed in OpenFAST of the floating wind turbine. The tank test campaign was carried out in the scaled model tested at the Deep Ocean Basin from the Lir National Ocean TF at Cork, Ireland. This floating substructure design was adapted by Saitec to support the 10MW INNWIND wind turbine within the ARCWIND project with the aim of withstanding the environmental conditions of the European Atlantic Area region. CENER provided the wind turbine controller specially designed for the SATH 10MW configuration. A description of the experimental set up, force actuator configuration and the numeric aerodynamic parameters are provided in this work. The most relevant experimental results under wind and wave loading are showed in time series and frequency domain. The influence of the submerged geometry variations in the pitch natural frequency is discussed. The paper shows the simulation of a case with rated wind speed, where the tilted geometry for the computation of the hydrostatic and hydrodynamic properties of the submerged substructure is considered. This case provides a better agreement of the pitch natural frequency with the experiments, than a equivalent simulation using the undisplaced geometry mesh for the computation of the hydrodynamic and hydrostatic properties.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Lei Li ◽  
Zhong Luo ◽  
Fengxia He ◽  
Zhaoye Qin ◽  
Yuqi Li ◽  
...  

The dual-rotor system has been widely used in aero-engines and has the characteristics of large axial size, the interaction between the high-pressure rotor and low-pressure rotor, and stiffness nonlinearity of bolted joints. However, the testing of a full-scale dual-rotor system is expensive and time-consuming. In this paper, the scaling relationships for the dual-rotor system with bolted joints are proposed for predicting the responses of full-scale structure, which are developed by generalized and fundamental equations of substructures (shaft, disk, and bolted joints). Different materials between prototype and model are considered in the derived scaling relationships. Moreover, the effects of bolted joints on the dual-rotor system are analyzed to demonstrate the necessity for considering bolted joints in the similitude procedure. Furthermore, the dynamic characteristics for different working conditions (low-pressure rotor excitation, high-pressure rotor excitation, two frequency excitations, and counter-rotation) are predicted by the scaled model made of a relatively cheap material. The results show that the critical speeds, vibration responses, and frequency components can be predicted with good accuracy, even though the scaled model is made of different materials.


2021 ◽  
Vol 13 (24) ◽  
pp. 14014
Author(s):  
Yi-Hung Chen ◽  
Ray-Yeng Yang

The concept of multiline anchor, whose application is mainly considered in water depths beyond 100 m and analyzed only by numerical simulation, has been discussed for half a decade, yet previous studies have not conducted the wave basin experiment. Thus, this paper set this concept firstly with a shallow water mooring system designed for a Taiwan offshore water area, where the suitable water depth for floating offshore wind turbine is located from 50 to 100 m, and then conducted a 1:144 scaled model wave basin experiment to validate the results from numerical simulation. In this paper, the numerical model simulated and analyzed three identical DeepCwind OC4 semi-submersible platforms equipped with NREL 5MW wind turbines in OrcaFlex and the experiment carried out by using three 1:144 scaled semi-submersible platforms with equivalent disks which simulated different operations of wind thrusts. To consider the possible influence of the wake effect, the minimum turbines spacing was set at 750 m in a full scaled model and the length of mooring lines was redesigned according to the catenary theory. This paper utilized OrcaWave to calculate hydrodynamic parameters and input it into OrcaFlex to simulate the line tension and the three degrees of freedom (surge, heave, and pitch) of the platforms under regular and irregular wave tests, and coordinate with scaled model tests carried out in Tainan Hydraulics Laboratory (THL). In addition to the reduction in the number of anchors, the concept of multiline anchor was also discussed in this study for the spatial configuration of offshore wind farms. It shows that the wind farm composed of three floating wind turbines can reduce the ocean space by roughly 24% compared to that with a single-line anchor. According to the comparison of numerical and experimental results, this study finally optimized the mooring lines by changing the diameter to increase the stability and the threshold of Minimum Breaking Load (MBL) and proposed a multiline anchor configuration for shallow offshore water area in Taiwan based on the results obtained.


2021 ◽  
pp. 95-102
Author(s):  
K. I Barinova ◽  
A. V Dolgopolov ◽  
O. A Orlova ◽  
M. A Pronin

Flutter numerical analysis of a dynamically scaled model (DSM) of a high aspect ratio wing was performed using experimentally obtained generalized parameters of eigen modes of vibrations. The DSM is made of polymer composite materials and is designed for aeroelastic studies in a high-speed wind tunnel. As a result of the analysis, safe operation conditions (flutter limits) of the DSM were determined. The input data to develop the flutter mathematical model are DSM modal test results, i.e. eigen frequencies, mode shapes, modal damping coefficients, and generalized masses obtained from the experiment. The known methods to determine generalized masses have experimental errors. In this work some of the most practical methods to get generalized masses are used: mechanical loading, quadrature component addition and the complex power method. Errors of the above methods were analyzed, and the most reliable methods were selected for flutter analysis. Comparison was made between the flutter analysis using generalized parameters and a pure theoretical one based on developing the mathematical model from the DSM design specifications. According to the design specifications, the mathematical model utilizes the beam-like schematization of the wing. The analysis was performed for Mach numbers from 0.2 to 0.8 and relative air densities of 0.5, 1, 1.5. Comparison of the two methods showed the difference in critical flutter dynamic pressure no more than 6%, which indicates good prospects of the flutter analysis based on generalized parameters of eigen modes.


Author(s):  
H Demirel ◽  
A Doğrul ◽  
S Sezen ◽  
F Alarçin

A backstepping control design procedure for nonlinear fin roll control of a trawler is presented in this paper. A roll equation consisting of linear and nonlinear damping and restoring moment on the roll response is expressed. Flow analyses are carried out for a scaled model of trawler type fishing vessel including fin stabilizers on both sides of the hull. The fin stabilizer geometry is chosen as NACA 0015 foil section which is widely used in the literature. The flow analyses are performed by using a commercial computational fluid dynamics (CFD) software based on finite volume method. The flow problem is modeled in a 3-dimensional manner while the flow is considered as steady, incompressible and fully turbulent. The numerical model consists of the ship wetted surface and the fin stabilizer in order to investigate the hull-fin interaction. Non-dimensional lift coefficients of the fin stabilizer for different angles of attack are gained. Both controlled and uncontrolled roll motions are examined and simulated in time domain for the maximum lift coefficient. Backstepping controller for roll motion has given a rapid and precise result.


Author(s):  
H Hakimzadeh ◽  
M Torabi Azad ◽  
M A Badri ◽  
F Azarsina ◽  
M Ezam

Specification of the frictional resistance values of tankers is the first step in managing their fuel consumption. Drag force of a very large crude oil carrier has been calculated using the numerical simulation method. With application of the ANSYS CFX software, the scaled model of the mentioned tanker with the length of 2.74 meters, width of 0.5 meters, draft of 0.17 meters was used for numerical simulation of the drag force in the tanker. Furthermore, the numerical solution of the drag force of the model was performed for 5 different speeds ranging from 0.65 to 0.85m/s. Based on the validations carried out, with mean drafts of 8 and 16.5cm, the difference between the results of the experimental and numerical models at low speeds was about 7%. However, the difference was observed to be up to 15% at higher Froude numbers. The results of the present study with respect to the SALINA are based on the method presented in ISO 19030 standard addressing the performance monitoring during vessel servicing.


Sign in / Sign up

Export Citation Format

Share Document