scholarly journals Review manuscript titled "The flow past a flatback airfoil with flow control devices: Benchmarking numerical simulations against wind tunnel data"

2020 ◽  
Author(s):  
Anonymous
2020 ◽  
Author(s):  
George Papadakis ◽  
Marinos Manolesos

Abstract. As wind turbines grow larger, the use of flatback airfoils has become standard practice for the root region of the blades. Flatback profiles provide higher lift and reduced sensitivity to soiling at significantly higher drag values. A number of flow control devices has been proposed to improve the performance of flatback profiles. In the present study, the flow past a flatback airfoil at a chord Reynolds number of 1.5 × 106 with and without trailing edge flow control devices is considered. Two different numerical approaches are applied, Unsteady Reynolds Averaged Navier Stokes (RANS) simulations and Detached Eddy Simulations (DES). The computational predictions are compared to wind tunnel measurements to assess the suitability of each method. The effect of each flow control device on the flow is examined based on the DES results on the finer mesh. Results agree well with the experimental findings and show that a newly proposed flap device outperforms traditional solutions for flatback airfoils. In terms of numerical modelling, the more expensive DES approach is more suitable if the wake frequencies are of interest, but the simplest 2D RANS simulations can provide acceptable load predictions.


2020 ◽  
Vol 5 (3) ◽  
pp. 911-927
Author(s):  
George Papadakis ◽  
Marinos Manolesos

Abstract. As wind turbines grow larger, the use of flatback airfoils has become standard practice for the root region of the blades. Flatback profiles provide higher lift and reduced sensitivity to soiling at significantly higher drag values. A number of flow control devices have been proposed to improve the performance of flatback profiles. In the present study, the flow past a flatback airfoil at a chord Reynolds number of 1.5×106 with and without trailing edge flow control devices is considered. Two different numerical approaches are applied, unsteady Reynolds-Averaged Navier Stokes (RANS) simulations and detached eddy simulations (DES). The computational predictions are compared against wind tunnel measurements to assess the suitability of each method. The effect of each flow control device on the flow is examined based on the DES results on the finer mesh. Results agree well with the experimental findings and show that a newly proposed flap device outperforms traditional solutions for flatback airfoils. In terms of numerical modelling, the more expensive DES approach is more suitable if the wake frequencies are of interest, but the simplest 2D RANS simulations can provide acceptable load predictions.


2015 ◽  
Vol 60 (2) ◽  
pp. 843-847 ◽  
Author(s):  
L. Sowa

AbstractThe mathematical model and numerical simulations of the liquid steel flow in a tundish are presented in this paper. The problem was treated as a complex and solved by the finite element method. One takes into consideration in the mathematical model the changes of thermophysical parameters depending on the temperature. The single-strand tundish is used to casting slabs. The internal work space of the tundish was modified by flow control devices. The first device was a pour pad situated in the pouring tundish zone. The second device was a dam. The third device was a baffle with three holes. The dam and baffle were placed in the tundish at different positions depending on the variant. The main purpose of using these was to put barriers in the steel flow path as well as give directional metal flow upwards which facilitated inclusion floatation. The interaction of flow control devices on hydrodynamic conditions was received from numerical simulations. As a result of the computations carried out, the liquid steel flow and steel temperature fields were obtained. The influences of the tundish modifications on the velocity fields in liquid phase of the steel were estimated, because these have essential an influence on high-quality of a continuous steel cast slab.


2009 ◽  
Vol 43 (39) ◽  
pp. 6238-6253 ◽  
Author(s):  
Elsa Aristodemou ◽  
Tom Bentham ◽  
Christopher Pain ◽  
Roy Colvile ◽  
Alan Robins ◽  
...  

2020 ◽  
Vol 22 (3) ◽  
pp. 619-627
Author(s):  
Luca Fenini ◽  
Stefano Malavasi

Abstract Fluid-dynamic noise emissions produced by flow-control devices inside ducts are a concerning issue for valve manufacturers and pipeline management. This work proposes a modified formulation of Acoustic Perturbation Equations (APE) that is applicable to industrial frameworks where the interest is addressed to noise prediction according to international standards. This formulation is derived from a literature APE system removing two terms allowing for a computational time reduction of about 20%. The physical contribution of the removed terms is discussed according to the literature. The modified APE are applied to the prediction of the noise emitted by an orifice. The reliability of the new APE system is evaluated by comparing the Sound Pressure Level (SPL) and the acoustic pressure with the ones returned by LES and literature APE. The new formulation agrees with the other methods far from the orifice: moving over nine diameters downstream of the trailing edge, the SPL is in accordance with the other models. Since international standards characterize control devices with the noise measured 1 m downstream of them, the modified APE formulation provides reliable and faster noise prediction for those devices with outlet diameter, d, such that 9d < 1 m.


Author(s):  
Mohd. S. Aris ◽  
Ieuan Owen ◽  
Chris. J. Sutcliffe

This paper is concerned with convective heat transfer enhancement of heated surfaces through the use of vortex generators and flow control devices. A preliminary proof-of-concept investigation has been carried out into the use of active vortex generators and flow control elements, both manufactured from Shape Memory Alloys (SMAs) which are activated at set temperatures. The vortex generators change their shape to intrude further into the flow at high temperature to enhance heat transfer, while they maintain a low profile at low temperatures to minimise flow pressure losses. One set of vortex generators was made from pre-alloyed powders of SMA material in an advanced rapid prototyping process known as Selective Laser Melting (SLM). Another set of devices was also made from commercially available flat annealed thin SMA sheets for comparison purposes. The flow control elements are devices that preferentially guide the flow to heated parts of a surface, again using temperature-activated SMAs. Promising results were obtained for both the vortex generator and flow control device when their temperatures were varied from 20° to 85°C. The vortex generators responded by increasing their angle of attack from 20° to 35° while the wavy flow control elements straightened out at higher temperatures. As the designs were two-way trained, they regain their initial position and shape at a lower temperature. The surface temperature of the heated plate on which the active devices were positioned reduced between 8 to 51%, indicating heat transfer enhancement due to the generated vortices and changes in air flow rates.


Sign in / Sign up

Export Citation Format

Share Document