scholarly journals First report ofPenicillium polonicumcausing storage rots of onion bulbs in Ankara province, Turkey

2015 ◽  
Vol 32 ◽  
pp. 24 ◽  
Author(s):  
E. Çakır ◽  
S. Maden
2011 ◽  
Vol 6 (4) ◽  
pp. 229-238 ◽  
Author(s):  
Mohamed H. Abd-Alla ◽  
Shymaa R. Bashandy ◽  
Stefan Ratering ◽  
Sylvia Schnell
Keyword(s):  
Soft Rot ◽  

Plant Disease ◽  
2009 ◽  
Vol 93 (3) ◽  
pp. 323-323 ◽  
Author(s):  
B. K. Schroeder ◽  
L. J. du Toit ◽  
H. F. Schwartz

In August of 2006, onion plants of cv. Redwing exhibiting premature dieback and bulb rot were obtained from a commercial onion crop under center pivot irrigation in the Columbia Basin of Washington State. High temperatures during the summer were similar to those in 2004, which preceded significant outbreaks of Enterobacter rot of onion bulbs in storage. Fungal pathogens of onion were not observed. Bacteria from infected bulb tissue were isolated and purified on nutrient broth yeast extract (NBY) agar, and 537 isolates were evaluated for the ability to ferment glucose anaerobically. Of the facultative anaerobes (~50% of all isolates), 48 isolates were arginine dihydrolase positive, indole negative, and unable to degrade pectin, i.e., characteristics typical of the genus Enterobacter (2), which includes Enterobacter cloacae, a bacterial pathogen reported to cause onion bulb rot in California and Colorado (1,3). Sixteen of the putative Enterobacter isolates, along with four strains of E. cloacae known to be pathogenic on onion (1) (ATCC 23355 and ATCC 13047, 310 (H. F. Schwartz, Colorado State University), and E6 (J. Loper, USDA ARS), were tested for pathogenicity on onion bulbs (8 to 10 cm in diameter; cv. Tamara). The isolates were grown overnight in NBY broth at 28°C, harvested by centrifugation and resuspended to an OD600 = 0.3 (~108 CFU/ml) in sterile distilled water. After the outermost fleshy scale of each bulb was removed, each bulb was surface disinfected in 0.6% NaOCl for 2 min, dipped in sterile distilled water, and then dipped in 95% ethanol. Each bulb was air dried before a 0.5-ml aliquot of bacterial suspension was injected into the shoulder of the bulb with a 20-gauge needle. Three bulbs were inoculated for each isolate, placed in individual plastic bags, sealed, and incubated at 30°C in the dark. Three bulbs injected with water and three noninjected bulbs served as controls. After 14 days, each bulb was sliced through the center and rated for rot. Thirteen isolates induced rot symptoms on the inner fleshy scales of all inoculated bulbs. Of these, seven also caused tan-to-brown discoloration of the inner fleshy scales; similar symptoms were caused by the four pathogenic reference strains of E. cloacae (1). No symptoms were observed in any of the controls. Symptoms were not observed when the bacteria, prepared as described above, were infiltrated into onion leaves. Bacteria were reisolated from the symptomatic inoculated bulb tissue and confirmed to be Enterobacter spp. by the above physiological tests. In addition, an isolate designated ECWSU2 and the corresponding strain recovered from one of the inoculated symptomatic bulbs, along with the four reference strains, were evaluated for anaerobic growth on a variety of carbon sources by using API 50 CHE test strips (bio Mérieux Vitek, Inc., Hazlewood, MO). The physiological test data along with sequence analysis of a portion of the 16S rRNA gene of each isolate confirmed all of these isolates to be E. cloacae (4; Ribosomal Database Project [ http://rdp.cme.msu.edu/ ]). To our knowledge, this is the first report of E. cloacae causing a bulb rot of onion in Washington State. References: (1) A. L. Bishop and R. M. Davis. Plant Dis. 74:692, 1990. (2) J. G. Holt et al. Bergey's Manual of Determinative Bacteriology. Williams and Wilkins, Baltimore, MD, 1994. (3) H. F. Schwartz and K. Otto. Plant Dis. 84:808, 2000. (4) L. Verdonck et al. Int. J. Syst. Bacteriol. 37:4, 1987.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1440-1440 ◽  
Author(s):  
N. Duduk ◽  
M. Vasić ◽  
I. Vico

Penicillium polonicum K. Zaleski is an economically important airborne fungus with a broad host range including cereals, peanuts, onions, dried meats, citrus fruits, and yam tubers (2,4). Secondary metabolites produced by this species include harmful mycotoxins penicillic acid, verucosidin, and nephrotoxic glycopeptides, which may play a role in Balkan Endemic Nephropathy (2,5). In January 2013, decayed onion bulbs (Allium cepa L. cv. Meranto) with blue mold symptoms were found causing significant economic losses at a storage facility in Stara Pazova, Serbia, and were collected. The decayed area of the bulbs was pale yellow to light brown, and tissue was soft and watery. Bluish green sporulation was abundant on the surface and inside the bulb, between decayed scales. Two isolates (designated L1a and L4p) were obtained and further characterized using morphological and molecular methods. Colonies on potato dextrose agar (PDA), Czapek yeast autolysate agar (CYA), malt extract agar (MEA), and yeast extract sucrose agar (YES) media at 25°C after 7 days were blue green, velutinous, with clear exudate present on CYA. Colony reverse color on CYA and YES for both isolates were cream to yellow brown. The mean colony diameter on PDA for L1a was 29.89 ± 0.96 mm, and for L4p was 26 ± 0.37 mm; on CYA 32.56 ± 0.53 mm for L1a and 30.11 ± 2.42 mm for L4p; and on YES 33.86 ± 1.59 mm for L1a and 31.17 ± 1.83 mm for L4p. No growth was observed on CYA when isolates were incubated at 37°C. Conidiophores of both isolates were terverticillate, stipes were septate with smooth to finely roughened walls, and phialides were ampulliform. Conidia were globose to subglobose, smooth-walled, and borne in columns. Conidial dimensions for L4p were 2.72 to 3.82 (3.26) × 2.36 to 3.42 (2.95) μm, and for L1a were 2.87 to 4.39 (3.58) × 2.53 to 3.79 (3.16) μm (n = 50). Both isolates tested positive for the production of cyclopiazonic acid and other alkaloids, as indicated by a violet reaction for the Ehrlich test. Morphological characters of L1a and L4p were in accordance with those described for P. polonicum K. Zaleski (2). Genomic DNA was isolated using CTAB extraction method (1) and molecular identification was completed using gene specific primers for the β-tubulin locus (Bt-LEV-Up4/Bt-LEV-Lo1) via conventional PCR (3). The nucleotide sequences of amplified products (~800 bp) have been assigned to GenBank (KJ570971 and 72). MegaBLAST of obtained sequences showed a 99% similarity with several sequences of P. polonicum deposited in GenBank, which confirmed the morphological identification. Pathogenicity was tested by wound inoculation of 10 surface sanitized onion bulbs cv. Meranto with 50 μl of a 105/ml conidial suspension from isolates grown on PDA. Ten control onion bulbs were wound-inoculated with Tween-treated sterile distilled water. After 30 days incubation in plastic containers, under high humidity at 22°C, typical symptoms of blue mold developed on inoculated bulbs, while non-inoculated controls remained symptomless. Isolates recovered from inoculated bulbs showed the same morphological characteristics as the original isolates, thus completing Koch's postulates. To our knowledge, this is the first report of P. polonicum on stored onion in Serbia. Results from this study indicate that a holistic approach to control this fungus should be implemented that may include one or all of the following: increased sanitation methods to eliminate inoculum, breeding for resistant onion cultivars, and integration of additional control methods to maintain onion quality during storage. References: (1) J. P. Day and R. C. Shattock. Eur. J. Plant Pathol 103:379, 1997. (2) J. C. Frisvad and R. A. Samson. Stud. Mycol. 49:1, 2004. (3) S. N. de Jong et al. Mycol. Res. 105:658, 2001. (4) W. K. Kim et al. Mycobiology 36:217, 2008. (5) P. G. Mantle. Facta Univ. Ser. Med. Biol. 9:64, 2002.


2011 ◽  
Vol 60 (1) ◽  
pp. 85-87 ◽  
Author(s):  
BEATA KOWALSKA ◽  
URSZULA SMOLIŃSKA ◽  
MICHAŁ OSKIERA

Specific bacterial disease symptoms were observed on onion bulbs in almost all regions in Poland. For the purpose of identification of agents causing disease, bacteria were isolated from the symptomatic plants. Their pathogenicity was confirmed by using pathogenicity test on onion scales. These bacteria were identified biochemically and molecularly as Serratia plymuthica.


Plant Disease ◽  
2017 ◽  
Vol 101 (6) ◽  
pp. 1030-1030 ◽  
Author(s):  
R. Félix-Gastélum ◽  
I. E. Maldonado-Mendoza ◽  
N. G. Olivas-Peraza ◽  
H. Brito-Vega ◽  
O. Peñuelas-Rubio ◽  
...  

1988 ◽  
Vol 62 (01) ◽  
pp. 141-143 ◽  
Author(s):  
Gerard M. Thomas ◽  
George O. Poinar

A sporulating Aspergillus is described from a piece of Eocene amber originating from the Dominican Republic. The Aspergillus most closely resembles a form of the white spored phase of Aspergillus janus Raper and Thom. This is the first report of a fossil species of Aspergillus.


2005 ◽  
Vol 173 (4S) ◽  
pp. 377-378
Author(s):  
Yasunori Hiraoka ◽  
Kazuhiko Yamada ◽  
Yuji Shimizu ◽  
Hiroyuki Abe
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document