scholarly journals First report of binucleate Rhizoctonia AG U causing black scurf on potato tubers in Japan

2018 ◽  
Vol 38 ◽  
pp. 24
Author(s):  
T. Misawa ◽  
D. Kurose
Plant Disease ◽  
2021 ◽  
Vol 105 (1) ◽  
pp. 213
Author(s):  
S. D. Takooree ◽  
H. Neetoo ◽  
V. M. Ranghoo-Sanmukhiya ◽  
S. Hardowar ◽  
J. E. van der Waals ◽  
...  

Plant Disease ◽  
2015 ◽  
Vol 99 (12) ◽  
pp. 1790-1802 ◽  
Author(s):  
N. Muzhinji ◽  
M. Truter ◽  
J. W. Woodhall ◽  
J. E. van der Waals

A survey of anastomosis groups (AG) of Rhizoctonia spp. associated with potato diseases was conducted in South Africa. In total, 112 Rhizoctonia solani and 19 binucleate Rhizoctonia (BNR) isolates were recovered from diseased potato plants, characterized for AG and pathogenicity. The AG identity of the isolates was confirmed using phylogenetic analysis of the internal transcribed spacer region of ribosomal DNA. R. solani isolates recovered belonged to AG 3-PT, AG 2-2IIIB, AG 4HG-I, AG 4HG-III, and AG 5, while BNR isolates belonged to AG A and AG R, with frequencies of 74, 6.1, 2.3, 2.3, 0.8, 12.2, and 2.3%, respectively. R. solani AG 3-PT was the most predominant AG and occurred in all the potato-growing regions sampled, whereas the other AG occurred in distinct locations. Different AG grouped into distinct clades, with high maximum parsimony and maximum-likelihood bootstrap support for both R. solani and BNR. An experiment under greenhouse conditions with representative isolates from different AG showed differences in aggressiveness between and within AG. Isolates of AG 2-2IIIB, AG 4HG-III, and AG R were the most aggressive in causing stem canker while AG 3-PT, AG 5, and AG R caused black scurf. This is the first comprehensive survey of R. solani and BNR on potato in South Africa using a molecular-based approach. This is the first report of R. solani AG 2-2IIIB and AG 4 HG-I causing stem and stolon canker and BNR AG A and AG R causing stem canker and black scurf on potato in South Africa.


2010 ◽  
Vol 11 (1) ◽  
pp. 46 ◽  
Author(s):  
Helen M. Griffiths ◽  
Thomas A. Zitter ◽  
Kent Loeffler ◽  
Walter S. De Jong ◽  
Sandra Menasha

Colletotrichum coccodes commonly causes blemish type symptoms on potato tubers. This is the first report in North America of natural infection of tubers by C. coccodes causing sunken lesions during storage. Accepted for publication 31 May 2010. Published 8 July 2010.


Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1245-1245 ◽  
Author(s):  
J. W. Woodhall ◽  
B. Lutomirska ◽  
J. C. Peters ◽  
P. S. Wharton

Rhizoctonia solani is a species complex of 13 related but genetically distinct anastomosis groups (AGs). In potato, R. solani can infect the stems, stolons, and roots, resulting in quantitative losses. It can also cause qualitative losses through blemishes occurring on progeny tubers, such as black scurf and elephant hide (corky cracking). Knowledge of the AG in local populations is important because they differ in host range, fungicide sensitivity, and disease severity (2). To determine the AGs present in Poland, 54 tuber samples displaying typical R. solani symptoms were taken from six different fields in 2011. The fields were representative of five different administrative regions of Poland and from at least 10 different varieties. Rhizoctonia was isolated from tubers by placing symptomatic material on to tap water agar amended with streptomycin and penicillin and after 2 to 3 days Rhizoctonia colonies were identified and hyphal tips of these transferred to potato dextrose agar. Rhizoctonia was successfully isolated from 48 tubers displaying black scurf and two tubers displaying elephant hide symptoms. DNA was extracted from Rhizoctonia cultures using a Wizard Food kit (Promega) and the AG was determined using specific real-time PCR assays (1). All Rhizoctonia isolates were determined to be AG3 and this was confirmed for 10 selected isolates by observing hyphal fusion with a known AG3 tester isolate (Rs08) as described previously (3). Pairings were also conducted amongst the 10 Polish isolates, C2 reactions were typically observed indicating numerous vegetative compatible groups are present. This study shows that AG3 is likely to be the predominant AG in potato tubers in Poland. This is similar to other studies in Europe, which have all determined that AG3 accounts for at least 92% of isolates from potato (2,3). AG2-1, 4, and 5 have also been found in tubers worldwide and climate and certain crop rotations can influence the presence of these other AGs in potato tubers (2). However, climate and crop rotations in Poland are similar to other parts of Europe so the predominance of AG3 is expected. AG3 was also isolated from elephant hide symptoms; however, it was more frequently isolated from sclerotia. The ability of AG3 to prolifically produce sclerotia and thereby survive on seed tubers may explain its predominance in potato crops (4). Therefore, studies focusing on the management of Rhizoctonia potato disease in Poland should consider AG3 in the first instance. References: (1) G. E. Budge et al. Plant Pathol. 58:1071, 2009. (2) L. Tsror. J. Phytopathol. 158:649, 2010. (3) J. W. Woodhall et al. Plant Pathol. 56:286, 2007. (4) J. W. Woodhall et al. Plant Pathol. 57:5, 2008.


Plant Disease ◽  
2012 ◽  
Vol 96 (11) ◽  
pp. 1696-1696 ◽  
Author(s):  
P. P. Wang ◽  
X. H. Wu

Sugar beet (Beta vulgaris L.) is grown worldwide and produces one-third of the world's sugar supply. Sugar beet seedling Rhizoctonia damping-off is an important disease mainly caused by Rhizoctonia solani AG-2, AG-4, and AG-5 (2). In 2010, diseased sugar beet seedlings with about 20% incidence affected by damping-off, which showed dark brown lesions on the stems just below the soil surface and portions of the roots, were collected from nurseries in three locations in Heilongjiang province, northeast China. Root fragments taken from the margins of healthy tissues and lesions on roots were surface disinfected with 0.5% sodium hypochlorite for 2 min, rinsed with sterile water, then placed on potato dextrose agar (PDA) and incubated at 25°C in the dark. Three (designed HLJ-RAA1, HLJ-RAB1, HLJ-RAB2) of nine Rhizoctonia isolates were obtained from diseased tissues and preliminarily identified as binucleate Rhizoctonia (BNR) anamorph (teleomorph Ceratobasidium Rogers) species-like. Fungal colonies were white with large amounts of floccose, aerial hyphae. Hyphal cells were determined to be binucleate when stained with 4′-6-diamidino-2-phenylindole (DAPI) (1). No sclerotia were produced after 14 days on PDA. Average hyphal diameter of the three isolates were 4.2, 4.3, and 4.8 μm, respectively. Further, the internal transcribed spacer (ITS) region of rDNA was amplified from the genomic DNA extracted from hyphae by bead beating in 2% CTAB solution using stainless steel beads with primers ITS1 and ITS4. The ITS sequences (GenBank Accession Nos. JX073668, JX073669, and JX073670) were over 99% identical to those of more than 50 Ceratobasidium sp. AG-A isolates (e.g., GenBank Accession No. JQ688054.1; strain HY-15). Therefore, based on morphological and molecular characteristics, these isolates were identified to be BNR AG-A. To determine the pathogenicity of the isolates, sugar beet (cv. HI0305) seedlings were inoculated with wheat seeds colonized with each of the isolated Rhizoctonia strains (one seed per seedling), and grew in pots under greenhouse conditions (3). After 3 weeks, some inoculated plants showed damping-off as observed in the nurseries, whereas noninoculated control plants (sterile wheat seeds only) remained healthy. Disease incidence from the trials averaged 53.3%, 70%, and 53.3% for the isolates HLJ-RAA1, HLJ-RAB1, and HLJ-RAB2, respectively. The three BNR cultures of the pathogens were consistently reisolated from symptomatic roots, and their identities confirmed by morphological and molecular characteristics as described above, fulfilling Koch's postulates. BNR AG-A was previously reported to be pathogenic to soybean, pea, snap bean, and pak choy in China (4). However, to our knowledge, this is the first report of BNR AG-A causing sugar beet seedling damping-off in China. Sugar beet is often grown in crop rotation with soya bean and such a rotation could increase the risk of soilborne infection to either crop by BNR AG-A. References: (1) W. C. Kronland and M. E. Stanghellini. Phytopathology 78:820, 1988. (2) E. O'Sullivan and J. A. Kavanagh. Plant Pathol. 40:128, 1991. (3) C. E. Windels and D. J. Nabben. Phytopathology 79:83, 1989. (4) G. H. Yang et al. J. Phytopathol. 153:333, 2005.


Sign in / Sign up

Export Citation Format

Share Document