stem canker
Recently Published Documents


TOTAL DOCUMENTS

598
(FIVE YEARS 120)

H-INDEX

32
(FIVE YEARS 4)

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 50
Author(s):  
Magdalena Frąc ◽  
Joanna Kaczmarek ◽  
Małgorzata Jędryczka

In contrast to the long-lasting taxonomic classification of Plenodomus lingam and P. biglobosus as one species, formerly termed Leptosphaeria maculans, both species form separate monophyletic groups, comprising sub-classes, differing considerably with epidemiology towards Brassicaceae plants. Considering the great differences between P. lingam and P. biglobosus, we hypothesized their metabolic capacities vary to a great extent. The experiment was done using the FF microplates (Biolog Inc., Hayward, CA, USA) containing 95 carbon sources and tetrazolium dye. The fungi P. lingam and P. biglobosus subclade ‘brassicae’ (3 isolates per group) were cultured on PDA medium for 6 weeks at 20 °C and then fungal spores were used as inoculum of microplates. The test was carried out in triplicate. We have demonstrated that substrate richness, calculated as the number of utilized substrates (measured at λ490 nm), and the number of substrates allowing effective growth of the isolates (λ750 nm), showed significant differences among tested species. The most efficient isolate of P. lingam utilized 36 carbon sources, whereas P. biglobosus utilized 60 substrates. Among them, 25–29 carbon sources for P. lingam and 34–48 substrates for P. biglobosus were efficiently used, allowing their growth. Cluster analysis based on Senath criteria divided P. biglobosus into two groups and P. lingam isolates formed one group (33% similarity). We deduce the similarities between the tested species help them coexist on the same host plant and the differences greatly contribute to their different lifestyles, with P. biglobosus being less specialized and P. lingam coevolving more strictly with the host plant.


Plant Disease ◽  
2021 ◽  
Author(s):  
Alejandra Larach ◽  
Natalia Riquelme ◽  
Aldo Salinas ◽  
Philippe Eric Rolshausen ◽  
Michael Seeger ◽  
...  

Grapevine (Vitis vinifera L.) is one of the most important fruit crops in Chile based on economic value. Phaeomoniella chlamydospora and Botryosphaeriaceae species have been reported as the major causal agents associated with dieback symptoms in Chile commercial vineyards (Díaz and Latorre 2014; Besoain, 2018; Larach et al. 2020). Recently Eutypa lata has been reported attacking Chilean vineyards with dieback symptoms (Lolas et al. 2020). In this study, two commercial cv. Cabernet Sauvignon vineyards, located in O'Higgins Region of Chile, showing dead cordons, dead spur with a grayish color, canker, and vascular necrosis were sampled in fall 2018, with a high incidence of symptoms was observed. Four symptomatic wood samples were analyzed from these vineyards. Pieces of wood (<1 cm2) were taken from the advance zone of the canker lesions, disinfected with 70% ethanol, rinsed in sterile distilled water, dried, and transferred to two media in Petri plates, potato dextrose agar acidified with 0.5 ml of 96% lactic acid (APDA) and malt extract agar, and incubated for at least seven days at 24°C in darkness. From mycelium obtained from monosporic culture, two isolates were selected and morphologically identified as Diaporthe sp. To induce sporulation, these two isolates were grown in APDA under near-ultraviolet light (λ = 320 nm) at room temperature. After 30 days, the development of pycnidia was observed. Both Diaporthe sp. isolate presented alpha-conidia ellipsoidal with an obtuse apex, biguttulate (n=30) of 6.7 µm ± 0.33 µm x 3.3 µm ± 0.32 µm. No Beta-conidia or perhitecia were observed. DNA was extracted from the monosporic mycelium. The ribosomal internal transcribed spacer (ITS), β-tubulin (BT) gene, and elongation factor (EF) gene were amplified using ITS4/ITS5, Bt2a/Bt2b, and EF1-728F/EF1-986R primer pairs, respectively. PCR products were sequenced and identified as Diaporthe ambigua Nitschke (PUCV2140 and PUCV2141), showing 100% sequence identity with ITS MH864620.1, 99.8% with BT MG281142.1, and 100% with EF KC343738.1 sequences from D. ambigua. Sequences were deposited in GenBank (ITS: accession numbers MW301136, MW301137; BT: MW323445, MW323446 and EF: MW308305, MW308306). Two pathogenicity tests were performed with strains PUCV2140 and PUCV2141 using 2-year-old V.vinifera cv. Cabernet Sauvignon. In each test, three plants were used per isolate, considering one plant as an experimental unit. In the first test, a 5 mm mycelial plug from a 6-day-old APDA culture was inoculated using an oblique cut made in the bark with a sterile scalpel and done at the middle of the trunk. In the second test, the trial was done under the same described conditions previously, but in this case, one-year-old semi-lignified shoots were inoculated between two internodes, using mycelial plugs, one shoot for each plant. Injured plants but treated with sterile APDA plugs were used as controls. Plants were placed in natural conditions, and after three months from inoculations, plants showed a cortical canker and brown vascular lesions. Non-inoculated plants remained asymptomatic. The lengths of the cankers were 22.0 ± 1.8 mm and 10.5 ± 0.6 mm, after inoculations of the trunk and cane, respectively. The vascular lesions were 37.0 ± 3.3 and 18.0 ± 2.0 mm, in trunk and cane inoculations, respectively. D. ambigua was re-isolated and reidentified morphologically from the inoculated symptomatic plants, confirming Koch’s postulate. Also, the plants inoculated on the trunk showed premature leaf drop. To our knowledge, this is the first report of D. ambigua associated with dieback affecting grapevines in Chile. Previous D. ambigua was reported causing fruit rots (Auger et al. 2013; Díaz et al. 2017) and cordon dieback in kiwifruit (Díaz and Latorre, 2018), and stem canker and dieback in blueberry (Elfar et al. 2013) in Chile. This study reports a new species of fungi for Chile associated with the dead arm in vineyards. D. ambigua is a pathogen in essential crops in our country. Therefore, it is important to study its prevalence in the future.


Author(s):  
Kevin M. King ◽  
Jonathan S. West

Abstract Phoma stem canker / blackleg is an internationally important disease of Brassicas including B. napus (oilseed rape, OSR), caused by multiple genetic subclades of the fungi Plenodomus lingam (formerly Leptosphaeria maculans) and P. biglobosus (L. biglobosa). In Spring 2021, Phoma-like disease symptoms were observed on leaves and stems of Eutrema japonicum (wasabi) crops at three UK sites (Northern Ireland, Southern England and the West Midlands). Fungal isolation from wasabi leaf spots yielded colonies with two distinct phenotypes on potato dextrose agar (PDA). Isolates from the Northern Ireland and Southern England sites had white colonies with abundant pink cirri that were confirmed (based on ITS rDNA, beta tubulin and actin sequences) as P. biglobosus subclade ‘canadensis’ (Pbc). Those from the West Midlands site, however, had yellow pigmented colonies and were confirmed by sequencing as P. biglobosus subclade ‘brassicae’ (Pbb). Greenhouse pathogenicity testing showed that Pbb and Pbc wasabi isolates were pathogenic not only to this host but also OSR, B. oleracea (cabbage), and B. rapa (pak choi). Re-isolation of the fungi was attempted and confirmed from lesions that developed on inoculated OSR and wasabi, thus completing Koch’s postulates. These findings represent new discoveries for both Pbb and Pbc on wasabi, plus for Pbc in Europe. The crop health implications of these results are briefly considered.


2021 ◽  
pp. 146-155
Author(s):  
Alejandra María Peruzzo ◽  
Rosanna Nora Pioli ◽  
Facundo Ezequiel Hernández ◽  
Leonardo Daniel Ploper ◽  
Guillermo Raúl Pratta

2021 ◽  
Vol 9 (11) ◽  
pp. 2387
Author(s):  
Davood Roodi ◽  
James P. Millner ◽  
Craig R. McGill ◽  
Richard D. Johnson ◽  
Shen-Yan Hea ◽  
...  

Endophytic microorganisms are found within the tissues of many plants species, with some conferring several benefits to the host plant including resistance to plant diseases. In this study, two putative endophytic fungi that were previously isolated from wild seeds of Brassica, identified as Beauveria bassiana and Pseudogymnoascus pannorum, were inoculated into cultivars of three Brassica species—Brassica napus, Br. rapa and Br. oleracea. Both fungal endophytes were reisolated from above- and below-ground tissues of inoculated plants at four different plant-growth stages, including cotyledon, one-leaf, two-leaf, and four-leaf stages. None of the plants colonised by these fungi exhibited any obvious disease symptoms, indicating the formation of novel mutualistic associations. These novel plant–endophyte associations formed between Brassica plants and Be. bassiana significantly inhibited phoma stem canker, a devastating disease of Brassica crops worldwide, caused by the fungal pathogen Leptosphaeria maculans. The novel association formed with P. pannorum significantly suppressed the amount of disease caused by L. maculans in one out of two experiments. Although biological control is not a new strategy, endophytic fungi with both antiinsect and antifungal activity are a highly conceivable, sustainable option to manage pests and diseases of economically important crops.


Author(s):  
Zühtü Polat ◽  
Mehmet Akif Gültekin ◽  
Gülsüm Palacıoğlu ◽  
Harun Bayraktar

Author(s):  
Yue Pan ◽  
Xiaoling Lei ◽  
Pengfei Wang ◽  
Guichai Yang ◽  
Yingjie Gu ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Mehdi Mehrabi-Koushki ◽  
Saeid Artand ◽  
S. Akram Ahmadpour

2021 ◽  
Vol 7 (11) ◽  
pp. 885
Author(s):  
Bader M. Al Hamad ◽  
Seham M. Al Raish ◽  
Gaber A. Ramadan ◽  
Esam Eldin Saeed ◽  
Shaikha S. A. Alameri ◽  
...  

To manage stem canker disease on royal poinciana, actinobacterial isolates were used as biological control agents (BCAs) based on their strong in vitro inhibitory effects against Neoscytalidium dimidiatum. Streptomyces griseorubens UAE2 and Streptomyces wuyuanensis UAE1 had the ability to produce antifungal compounds and cell-wall-degrading enzymes (CWDEs). Only S. griseorubens, however, restored the activity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCD). In vivo apple fruit bioassay showed that lesion development was successfully constrained by either isolates on fruits inoculated with N. dimidiatum. In our greenhouse and container nursery experiments, S. griseorubens showed almost complete suppression of disease symptoms. This was evident when the preventive treatment of S. griseorubens significantly (p < 0.05) reduced the numbers of conidia of N. dimidiatum and defoliated leaves of royal poinciana seedlings to lesser levels than when S. wuyuanensis was applied, but comparable to control treatments (no pathogen). The disease management of stem canker was also associated with significant (p < 0.05) decreases in ACC levels in royal poinciana stems when S. griseorubens was applied compared to the non-ACCD-producing S. wuyuanensis. This study is the first to report the superiority of antagonistic actinobacteria to enhance their effectiveness as BCAs not only for producing antifungal metabolites and CWDEs but also for secreting ACCD.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
V.K. Soni ◽  
Ranjeeta Nag

The investigation on “Pathogenic disease occurrence in plantation sites of Bastar district, CG, India” revealed that the several disease of Tectona grandish and Eucalyptus globules trees species in the plantation site maintained by Bastar forest division (C.G.) During the survey of plantation sites, many trees were infected by pathogens. The infected teak species showed leaf spot, leaf blight, leaf gull, leaf brown spot, stem canker, powdery mildew etc. and affecting the growth and form of teak. Whereas in Eucalyptus trees showed stem canker, collar rot, leaf spot, leaf rust, brown leaf spot, disease and affecting the growth and forms of Eucalyptus. The survey was conducted at two plantation sites namely Titrgaon and Bastar in the region and incidence of pathogenic disease commonly found and casual organism/ pathogen were identified prescribed disease management was recorded. Management of immediate removal of infected plants helps to prevent the disease spread. Therefore, the present investigation was carried out for knowing occurrence and abundance of pathogens associated with Teak and Eucalyptus trees plantation in the Bastar district of Chhattisgarh.


Sign in / Sign up

Export Citation Format

Share Document