A comparative study of short-term load forecasting methods in distribution network
Short-term load forecasting plays an important role in building operation strategies and ensuring reliability of any electric power system. Generally, short-term load forecasting methods can be classified into three main categories: statistical approaches, artificial intelligence based-approaches and hybrid approaches. Each method has its own advantages and shortcomings. Therefore, the primary objective of this paper is to investigate the effectiveness of ARIMA model (e.g., statistical method) and artificial neural network (e.g., artificial intelligence based-method) in short-term load forecasting of distribution network. Firstly, the short-term load demand of Quy Nhon distribution network and short-term load demand of Phu Cat distribution network are analyzed. Secondly, the ARIMA model is applied to predict the load demand of two distribution networks. Thirdly, the artificial neural network is utilized to estimate the load demand of these networks. Finally, the estimated results from two applied methods are conducted for comparative purposes.