Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 836 ◽  
Author(s):  
Young-Hoon Jin ◽  
In-Tae Hwang ◽  
Won-Hyung Lee

Augmented reality (AR) is a useful visualization technology that displays information by adding virtual images to the real world. In AR systems that require three-dimensional information, point cloud data is easy to use after real-time acquisition, however, it is difficult to measure and visualize real-time objects due to the large amount of data and a matching process. In this paper we explored a method of estimating pipes from point cloud data and visualizing them in real-time through augmented reality devices. In general, pipe estimation in a point cloud uses a Hough transform and is performed through a preprocessing process, such as noise filtering, normal estimation, or segmentation. However, there is a disadvantage in that the execution time is slow due to a large amount of computation. Therefore, for the real-time visualization in augmented reality devices, the fast cylinder matching method using random sample consensus (RANSAC) is required. In this paper, we proposed parallel processing, multiple frames, adjustable scale, and error correction for real-time visualization. The real-time visualization method through the augmented reality device obtained a depth image from the sensor and configured a uniform point cloud using a voxel grid algorithm. The constructed data was analyzed according to the fast cylinder matching method using RANSAC. The real-time visualization method through augmented reality devices is expected to be used to identify problems, such as the sagging of pipes, through real-time measurements at plant sites due to the spread of various AR devices.


2021 ◽  
Author(s):  
Tiago Davi Oliveira de Araujo ◽  
Beatriz Sousa Santos ◽  
Carlos Gustavo Resque dos Santos ◽  
Bianchi Serique Meiguins

2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Rujianto Eko Saputro ◽  
Dhanar Intan Surya Saputra
Keyword(s):  

Media pembelajaran ternyata selalu mengikuti perkembangan teknologi yangada, mulai dari teknologi cetak, audio visual, komputer sampai teknologi gabunganantara teknologi cetak dengan komputer. Saat ini media pembelajaran hasil gabunganteknologi cetak dan komputer dapat diwujudkan dengan media teknologi AugmentedReality (AR). Augmented Reality (AR) adalah teknologi yang digunakan untukmerealisasikan dunia virtual ke dalam dunia nyata secara real-time. Organ pencernaanmanusia terdiri atas Mulut, Kerongkongan atau esofagus, Lambung, Usus halus, danUsus besar. Media pembelajaran mengenal organ pencernaan manusia pada saat inisangat monoton, yaitu melalui gambar, buku atau bahkan alat proyeksi lainnya.Menggunakan Augmented Reality yang mampu merealisasikan dunia virtual ke dunianyata, dapat mengubah objek-objek tersebut menjadi objek 3D, sehingga metodepembelajaran tidaklah monoton dan anak-anak jadi terpacu untuk mengetahuinya lebihlanjut, seperti mengetahui nama organ dan keterangan dari masing-masing organtersebut.


2018 ◽  
Author(s):  
Kyle Plunkett

This manuscript provides two demonstrations of how Augmented Reality (AR), which is the projection of virtual information onto a real-world object, can be applied in the classroom and in the laboratory. Using only a smart phone and the free HP Reveal app, content rich AR notecards were prepared. The physical notecards are based on Organic Chemistry I reactions and show only a reagent and substrate. Upon interacting with the HP Reveal app, an AR video projection shows the product of the reaction as well as a real-time, hand-drawn curved-arrow mechanism of how the product is formed. Thirty AR notecards based on common Organic Chemistry I reactions and mechanisms are provided in the Supporting Information and are available for widespread use. In addition, the HP Reveal app was used to create AR video projections onto laboratory instrumentation so that a virtual expert can guide the user during the equipment setup and operation.


Sign in / Sign up

Export Citation Format

Share Document