OPTIMIZATION AND OPTIMAL CONTROL OF ENERGY CONSUMPTION BASED ON NEURAL NETWORK MODELS

Author(s):  
O.Yu. Maryasin
2016 ◽  
Vol 20 (4) ◽  
pp. 1321-1331 ◽  
Author(s):  
Radisa Jovanovic ◽  
Aleksandra Sretenovic ◽  
Branislav Zivkovic

Feedforward neural network models are created for prediction of heating energy consumption of a university campus. Actual measured data are used for training and testing the models. Multistage neural network ensemble is proposed for the possible improvement of prediction accuracy. Previously trained feed-forward neural networks are first separated into clusters, using k-means algorithm, and then the best network of each cluster is chosen as a member of the ensemble. Three different averaging methods (simple, weighted and median) for obtaining ensemble output are applied. Besides this conventional approach, single radial basis neural network in the second level is used to aggregate the selected ensemble members. It is shown that heating energy consumption can be predicted with better accuracy by using ensemble of neural networks than using the best trained single neural network, while the best results are achieved with multistage ensemble.


2012 ◽  
Vol 23 (3) ◽  
pp. 40-46 ◽  
Author(s):  
Olanrewaju A. Oludolapo ◽  
Jimoh A. Adisa ◽  
Kholopane A. Pule

In view of the close association between energy and economic growth, South Africa’s aspirations for higher growth, more energy is required; formulating a long-term economic development plan and implementing an energy strategy for a country /industry necessitates establishing the correct relationship between energy and the economy. As insufficient energy or a lack thereof is reported to be a major cause of social and economic poverty, it is very important to select a model to forecast the consumption of energy reasonably accurately. This study presents techniques based on the development of multilayer perceptron (MLP) and radial basis function (RBF) of artificial neural network (ANN) models, for calculating the energy consumption of South Africa’s industrial sector between 1993 and 2000. The approach examines the energy consumption in relation to the gross domestic product. The results indicate a strong agreement between model predictions and observed values, since the mean absolute percentage error is below 5%. When performance indices are compared, the RBF-based model is a more accurate predictor than the MLP model.


2021 ◽  
Vol 15 (3) ◽  
pp. 1-21
Author(s):  
Jie Jiang ◽  
Qiuqiang Kong ◽  
Mark D. Plumbley ◽  
Nigel Gilbert ◽  
Mark Hoogendoorn ◽  
...  

Energy disaggregation, a.k.a. Non-Intrusive Load Monitoring, aims to separate the energy consumption of individual appliances from the readings of a mains power meter measuring the total energy consumption of, e.g., a whole house. Energy consumption of individual appliances can be useful in many applications, e.g., providing appliance-level feedback to the end users to help them understand their energy consumption and ultimately save energy. Recently, with the availability of large-scale energy consumption datasets, various neural network models such as convolutional neural networks and recurrent neural networks have been investigated to solve the energy disaggregation problem. Neural network models can learn complex patterns from large amounts of data and have been shown to outperform the traditional machine learning methods such as variants of hidden Markov models. However, current neural network methods for energy disaggregation are either computational expensive or are not capable of handling long-term dependencies. In this article, we investigate the application of the recently developed WaveNet models for the task of energy disaggregation. Based on a real-world energy dataset collected from 20 households over 2 years, we show that WaveNet models outperforms the state-of-the-art deep learning methods proposed in the literature for energy disaggregation in terms of both error measures and computational cost. On the basis of energy disaggregation, we then investigate the performance of two deep-learning based frameworks for the task of on/off detection which aims at estimating whether an appliance is in operation or not. The first framework obtains the on/off states of an appliance by binarising the predictions of a regression model trained for energy disaggregation, while the second framework obtains the on/off states of an appliance by directly training a binary classifier with binarised energy readings of the appliance serving as the target values. Based on the same dataset, we show that for the task of on/off detection the second framework, i.e., directly training a binary classifier, achieves better performance in terms of F1 score.


Sign in / Sign up

Export Citation Format

Share Document