scholarly journals Hierarchical Voltage Control of a Wind Power Plant Using the Adaptive IQ-V Characteristic of a Doubly-Fed Induction Generator

2015 ◽  
Vol 10 (2) ◽  
pp. 504-510 ◽  
Author(s):  
Jinho Kim ◽  
Geon Park ◽  
Jul-Ki Seok ◽  
Byongjun Lee ◽  
Yong Cheol Kang
2021 ◽  
Vol 15 (1) ◽  
pp. 37-44
Author(s):  
Thai Hiep Le ◽  
◽  
Duong Hoang Phuc Tran

In this paper, the operating mode of a doubly fed induction generator (DFIG) wind turbine is studied in order to evaluate its fault ride-through and transient stability with a grid’s short circuit fault at near the wind power plant. Based on the structure of DFIG, external resistors are directly connected to rotor windings, then the generator operates as a wound rotor induction generator (WRIG) when there is a short circuit fault on the grid. According to the simulation results in Matlab, the active power is consumed on the crowbar resistor, causing the active power characteristic of generator is changed from high to low. As a result, the amount of excess mechanical energy is not much, so the generator be not accelerated significantly. These simulation results show that it is appropriate to use the crowbar resistor to change the power characteristic of the DFIG. Thanks to this change, the generator is still connected to the grid, stable operation both during and after a short circuit.


Author(s):  
Mahmoud A. Mossa ◽  
Ton Duc Do ◽  
Ameena Saad Al-Sumaiti ◽  
Nguyen Vu Quynh ◽  
Ahmed A. Zaki Diab

2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Julius Mwaniki ◽  
Hui Lin ◽  
Zhiyong Dai

The increase in wind power penetration, at 456 GW as of June 2016, has resulted in more stringent grid codes which specify that the wind energy conversion systems (WECS) must remain connected to the system during and after a grid fault and, furthermore, must offer grid support by providing reactive currents. The doubly fed induction generator (DFIG) WECS is a well-proven technology, having been in use in wind power generation for many years and having a large world market share due to its many merits. Newer technologies such as the direct drive gearless permanent magnet synchronous generator have come up to challenge its market share, but the large number of installed machines ensures that it remains of interest in the wind industry. This paper presents a concise introduction of the DFIG WECS covering its construction, operation, merits, demerits, modelling, control types, levels and strategies, faults and their proposed solutions, and, finally, simulation. Qualities for the optimal control strategy are then proposed. The paper is intended to cover major issues related to the DFIG WECS that are a must for an overview of the system and hence serve as an introduction especially for new entrants into this area of study.


Sign in / Sign up

Export Citation Format

Share Document