scholarly journals Formal Verification Techniques for Model Transformations: A Tridimensional Classification .

2015 ◽  
Vol 14 (3) ◽  
pp. 1:1 ◽  
Author(s):  
Moussa Amrani ◽  
Benoît Combemale ◽  
Levi Lúcio ◽  
Gehan M. K. Selim ◽  
Jürgen Dingel ◽  
...  
Author(s):  
Pierre-Loïc Garoche

The verification of control system software is critical to a host of technologies and industries, from aeronautics and medical technology to the cars we drive. The failure of controller software can cost people their lives. This book provides control engineers and computer scientists with an introduction to the formal techniques for analyzing and verifying this important class of software. Too often, control engineers are unaware of the issues surrounding the verification of software, while computer scientists tend to be unfamiliar with the specificities of controller software. The book provides a unified approach that is geared to graduate students in both fields, covering formal verification methods as well as the design and verification of controllers. It presents a wealth of new verification techniques for performing exhaustive analysis of controller software. These include new means to compute nonlinear invariants, the use of convex optimization tools, and methods for dealing with numerical imprecisions such as floating point computations occurring in the analyzed software. As the autonomy of critical systems continues to increase—as evidenced by autonomous cars, drones, and satellites and landers—the numerical functions in these systems are growing ever more advanced. The techniques presented here are essential to support the formal analysis of the controller software being used in these new and emerging technologies.


2010 ◽  
Vol 10 (9&10) ◽  
pp. 721-734
Author(s):  
Shigeru Yamashita ◽  
Igor L. Markov

We perform formal verification of quantum circuits by integrating several techniques specialized to particular classes of circuits. Our verification methodology is based on the new notion of a reversible miter that allows one to leverage existing techniques for simplification of quantum circuits. For reversible circuits which arise as runtime bottlenecks of key quantum algorithms, we develop several verification techniques and empirically compare them. We also combine existing quantum verification tools with the use of SAT-solvers. Experiments with circuits for Shor's number-factoring algorithm, containing thousands of gates, show improvements in efficiency by four orders of magnitude.


Author(s):  
G. Cabodi ◽  
P. Camurati ◽  
F. Corno ◽  
P. Prinetto ◽  
M.S. Reorda

Sign in / Sign up

Export Citation Format

Share Document