Assessing System Vulnerability Using Formal Verification Techniques

Author(s):  
Görschwin Fey
Author(s):  
Pierre-Loïc Garoche

The verification of control system software is critical to a host of technologies and industries, from aeronautics and medical technology to the cars we drive. The failure of controller software can cost people their lives. This book provides control engineers and computer scientists with an introduction to the formal techniques for analyzing and verifying this important class of software. Too often, control engineers are unaware of the issues surrounding the verification of software, while computer scientists tend to be unfamiliar with the specificities of controller software. The book provides a unified approach that is geared to graduate students in both fields, covering formal verification methods as well as the design and verification of controllers. It presents a wealth of new verification techniques for performing exhaustive analysis of controller software. These include new means to compute nonlinear invariants, the use of convex optimization tools, and methods for dealing with numerical imprecisions such as floating point computations occurring in the analyzed software. As the autonomy of critical systems continues to increase—as evidenced by autonomous cars, drones, and satellites and landers—the numerical functions in these systems are growing ever more advanced. The techniques presented here are essential to support the formal analysis of the controller software being used in these new and emerging technologies.


2010 ◽  
Vol 10 (9&10) ◽  
pp. 721-734
Author(s):  
Shigeru Yamashita ◽  
Igor L. Markov

We perform formal verification of quantum circuits by integrating several techniques specialized to particular classes of circuits. Our verification methodology is based on the new notion of a reversible miter that allows one to leverage existing techniques for simplification of quantum circuits. For reversible circuits which arise as runtime bottlenecks of key quantum algorithms, we develop several verification techniques and empirically compare them. We also combine existing quantum verification tools with the use of SAT-solvers. Experiments with circuits for Shor's number-factoring algorithm, containing thousands of gates, show improvements in efficiency by four orders of magnitude.


Author(s):  
G. Cabodi ◽  
P. Camurati ◽  
F. Corno ◽  
P. Prinetto ◽  
M.S. Reorda

Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1057
Author(s):  
Gianpiero Cabodi ◽  
Paolo Camurati ◽  
Fabrizio Finocchiaro ◽  
Danilo Vendraminetto

Spectre and Meltdown attacks in modern microprocessors represent a new class of attacks that have been difficult to deal with. They underline vulnerabilities in hardware design that have been going unnoticed for years. This shows the weakness of the state-of-the-art verification process and design practices. These attacks are OS-independent, and they do not exploit any software vulnerabilities. Moreover, they violate all security assumptions ensured by standard security procedures, (e.g., address space isolation), and, as a result, every security mechanism built upon these guarantees. These vulnerabilities allow the attacker to retrieve leaked data without accessing the secret directly. Indeed, they make use of covert channels, which are mechanisms of hidden communication that convey sensitive information without any visible information flow between the malicious party and the victim. The root cause of this type of side-channel attacks lies within the speculative and out-of-order execution of modern high-performance microarchitectures. Since modern processors are hard to verify with standard formal verification techniques, we present a methodology that shows how to transform a realistic model of a speculative and out-of-order processor into an abstract one. Following related formal verification approaches, we simplify the model under consideration by abstraction and refinement steps. We also present an approach to formally verify the abstract model using a standard model checker. The theoretical flow, reliant on established formal verification results, is introduced and a sketch of proof is provided for soundness and correctness. Finally, we demonstrate the feasibility of our approach, by applying it on a pipelined DLX RISC-inspired processor architecture. We show preliminary experimental results to support our claim, performing Bounded Model-Checking with a state-of-the-art model checker.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4506
Author(s):  
Aaditya Prakash Chouhan ◽  
Gourinath Banda

Autonomous vehicles are gaining popularity throughout the world among researchers and consumers. However, their popularity has not yet reached the level where it is widely accepted as a fully developed technology as a large portion of the consumer base feels skeptical about it. Proving the correctness of this technology will help in establishing faith in it. That is easier said than done because of the fact that the formal verification techniques has not attained the level of development and application that it is ought to. In this work, we present Statistical Model Checking (SMC) as a possible solution for verifying the safety of autonomous systems and algorithms. We apply it on Heuristic Autonomous Intersection Management (HAIM) algorithm. The presented verification routine can be adopted for other conflict point based autonomous intersection management algorithms as well. Along with verifying the HAIM, we also demonstrate the modeling and verification applied at each stage of development to verify the inherent behavior of the algorithm. The HAIM scheme is formally modeled using a variant of the language of Timed Automata. The model consists of automata that encode the behavior of vehicles, intersection manager (IM) and collision checkers. To verify the complete nature of the heuristic and ensure correct modeling of the system, we model it in layers and verify each layer separately for their expected behavior. Along with that, we perform implementation verification and error injection testing to ensure faithful modeling of the system. Results show with high confidence the freedom from collisions of the intersection controlled by the HAIM algorithm.


2015 ◽  
Vol 14 (3) ◽  
pp. 1:1 ◽  
Author(s):  
Moussa Amrani ◽  
Benoît Combemale ◽  
Levi Lúcio ◽  
Gehan M. K. Selim ◽  
Jürgen Dingel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document