scholarly journals Scheduling and Synchronization Algorithms in Operating System: A Survey

2021 ◽  
Vol 1 (2) ◽  
pp. 1-16
Author(s):  
Mohammed Y. Shakor ◽  

An operating system is software that is designed to manage computer hardware and software resources. However, this management requires applying an ample number of techniques and algorithms which are called synchronization and scheduling. The scheduling algorithms are used to arrange the way that the CPU is assigned to the processes, while synchronization is utilized to indicate how to work with multi-processes at the same time. Therefore, they are related to each other. CPU scheduling is a vital phenomenon of an operating system. At present, numerous CPU scheduling algorithms exist as First Come First Serve) FCFS(, Shortest Job First (SJF), Shortest Remaining Time First (SRTF), Priority Scheduling, and Round Robin (RR). In this paper, a survey of the current synchronization and scheduling algorithms have been presented. An overview of each technique with the main algorithms have been described in detail with the advantages and the issues of each algorithm. Furthermore, this paper has dug deep into the real-time operating system scheduling issues, which is the current trend in operating system researches.

Author(s):  
Sonia Zouaoui ◽  
Lotfi Boussaid ◽  
Abdellatif Mtibaa

<p>This paper introduce a new approach for scheduling algorithms which aim to improve real time operating system CPU performance. This new approach of CPU Scheduling algorithm is based on the combination of round-robin (RR) and Priority based (PB) scheduling algorithms. This solution maintains the advantage of simple round robin scheduling algorithm, which is reducing starvation and integrates the advantage of priority scheduling. The proposed algorithm implements the concept of time quantum and assigning as well priority index to the processes. Existing round robin CPU scheduling algorithm cannot be dedicated to real time operating system due to their large waiting time, large response time, large turnaround time and less throughput. This new algorithm improves all the drawbacks of round robin CPU scheduling algorithm. In addition, this paper presents analysis comparing proposed algorithm with existing round robin scheduling algorithm focusing on average waiting time and average turnaround time.</p>


2014 ◽  
Vol 7 (1) ◽  
pp. 16-29
Author(s):  
Taqwa Flayyih Hasan

Scheduling is a key concept in computer multitasking and multiprocessing operating system design, and in real-time operating system design. CPU scheduling is the basis of multiprogramming operating systems by switching the CPU among process; the operating system can make the computer more productive, scheduling algorithms are widely used in communications networks and in operating systems to allocate resources to competing tasks. In this paper, visual interfaces for CPU scheduling algorithms were designed by using Visual Basic6 language. They may use to learn users about this algorithms and how they work


Author(s):  
Sanjay Singh ◽  
Nishant Tripathi ◽  
Anil Kumar Chaudhary ◽  
Mahesh Kumar Singh

RTOS (real time operating system) can be defined as “The ability of the operating system to provide a required level of service in bounded response time.” A real time system responds in a (timely) predictable way to unpredictable external stimuli arrivals. To build a predictable system, all its components (hardware & software) should enable this requirement to be fulfilled. Traffic on a bus for example should take place in a way allowing all events to be managed within the prescribe time limit. However it should not be forgotten that a good RTOS is only is building block. Using it in a wrongly designed system may lead to a malfunctioning of the RT system. A good RTOS can be defined as one that has a bounded (predictable) behavior under all system load scenarios (simultaneous interrupts and thread execution). In RT system, each individual deadline should be met. Real-time systems are designed to control and monitor their environment. Most of these systems are using sensors to collect environment state and use actuators to change something.


2014 ◽  
Vol 7 (3) ◽  
pp. 337-344
Author(s):  
Yue-hua Li ◽  
Xue Liu ◽  
Yun-feng Ding ◽  
Hao-xin Cui ◽  
Yong-bin Du ◽  
...  

1993 ◽  
Vol 24 (5) ◽  
pp. 1-13
Author(s):  
Shizuo Yokohata ◽  
Yumiko Sugita ◽  
Hisanobu Aoki ◽  
Tomoo Ishikawa

1976 ◽  
Author(s):  
David N. Cutler ◽  
Richard H. Eckhouse ◽  
Mario R. Pellegrini

Sign in / Sign up

Export Citation Format

Share Document