scholarly journals Design of Optimized Radial Basis Function Neural Networks Classifier with the Aid of Principal Component Analysis and Linear Discriminant Analysis

2012 ◽  
Vol 22 (6) ◽  
pp. 735-740 ◽  
Author(s):  
Wook-Dong Kim ◽  
Sung-Kwun Oh
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Wen-Sheng Chen ◽  
Chu Zhang ◽  
Shengyong Chen

Fisher linear discriminant analysis (FLDA) is a classic linear feature extraction and dimensionality reduction approach for face recognition. It is known that geometric distribution weight information of image data plays an important role in machine learning approaches. However, FLDA does not employ the geometric distribution weight information of facial images in the training stage. Hence, its recognition accuracy will be affected. In order to enhance the classification power of FLDA method, this paper utilizes radial basis function (RBF) with fractional order to model the geometric distribution weight information of the training samples and proposes a novel geometric distribution weight information based Fisher discriminant criterion. Subsequently, a geometric distribution weight information based LDA (GLDA) algorithm is developed and successfully applied to face recognition. Two publicly available face databases, namely, ORL and FERET databases, are selected for evaluation. Compared with some LDA-based algorithms, experimental results exhibit that our GLDA approach gives superior performance.


Author(s):  
David Zhang ◽  
Xiao-Yuan Jing ◽  
Jian Yang

This chapter presents two straightforward image projection techniques — two-dimensional (2D) image matrix-based principal component analysis (IMPCA, 2DPCA) and 2D image matrix-based Fisher linear discriminant analysis (IMLDA, 2DLDA). After a brief introduction, we first introduce IMPCA. Then IMLDA technology is given. As a result, we summarize some useful conclusions.


Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 870
Author(s):  
Tengteng Wen ◽  
Dehan Luo ◽  
Yongjie Ji ◽  
Pingzhong Zhong

Odor reproduction, a branch of machine olfaction, is a technology through which a machine represents various odors by blending several odor sources in different proportions and releases them. In this paper, an odor reproduction system is proposed. The system includes an atomization-based odor dispenser using 16 micro-porous piezoelectric transducers. The authors propose the use of an electronic nose combined with a Principal Component Analysis–Linear Discriminant Analysis (PCA–LDA) model to evaluate the effectiveness of the system. The results indicate that the model can be used to evaluate the system.


Sign in / Sign up

Export Citation Format

Share Document