scholarly journals On the Randić Index of Corona Product Graphs

2011 ◽  
Vol 2011 ◽  
pp. 1-7
Author(s):  
Ismael G. Yero ◽  
Juan A. Rodríguez-Velázquez

Let G be a graph with vertex set V=(v1,v2,…,vn). Let δ(vi) be the degree of the vertex vi∈V. If the vertices vi1,vi2,…,vih+1 form a path of length h≥1 in the graph G, then the hth order Randić index Rh of G is defined as the sum of the terms 1/δ(vi1)δ(vi2)⋯δ(vih+1) over all paths of length h contained (as subgraphs) in G. Lower and upper bounds for Rh, in terms of the vertex degree sequence of its factors, are obtained for corona product graphs. Moreover, closed formulas are obtained when the factors are regular graphs.

2016 ◽  
Vol 25 (1) ◽  
pp. 71-75
Author(s):  
I. Z. MILOVANOVIC ◽  
◽  
P. M. BEKAKOS ◽  
M. P. BEKAKOS ◽  
E. I. MILOVANOVIC ◽  
...  

Let G = (V, E) be an undirected simple graph of order n with m edges without isolated vertices. Further, let d1 ≥ d2 ≥ · · · ≥ dn be vertex degree sequence of G. General Randic index of graph ´ G = (V, E) is defined by Rα = X (i,j)∈E (didj ) α, where α ∈ R − {0}. We consider the case when α = −1 and obtain upper bound for R−1.


2016 ◽  
Vol 24 (1) ◽  
pp. 153-176 ◽  
Author(s):  
Kinkar Ch. Das ◽  
Nihat Akgunes ◽  
Muge Togan ◽  
Aysun Yurttas ◽  
I. Naci Cangul ◽  
...  

AbstractFor a (molecular) graph G with vertex set V (G) and edge set E(G), the first Zagreb index of G is defined as, where dG(vi) is the degree of vertex vi in G. Recently Xu et al. introduced two graphical invariantsandnamed as first multiplicative Zagreb coindex and second multiplicative Zagreb coindex, respectively. The Narumi-Katayama index of a graph G, denoted by NK(G), is equal to the product of the degrees of the vertices of G, that is, NK(G) =. The irregularity index t(G) of G is defined as the number of distinct terms in the degree sequence of G. In this paper, we give some lower and upper bounds on the first Zagreb index M1(G) of graphs and trees in terms of number of vertices, irregularity index, maxi- mum degree, and characterize the extremal graphs. Moreover, we obtain some lower and upper bounds on the (first and second) multiplicative Zagreb coindices of graphs and characterize the extremal graphs. Finally, we present some relations between first Zagreb index and Narumi-Katayama index, and (first and second) multiplicative Zagreb index and coindices of graphs.


Author(s):  
Akbar Jahanbani

Let G be a graph with n vertices and let 1; 2; : : : ; n be the eigenvalues of Randic matrix. The Randic Estrada index of G is REE(G) = Ón i=1 ei . In this paper, we establish lower and upper bounds for Randic index in terms of graph invariants such as the number of vertices and eigenvalues of graphs and improve some previously published lower bounds.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 98 ◽  
Author(s):  
Muhammad Kamran Jamil ◽  
Ioan Tomescu ◽  
Muhammad Imran ◽  
Aisha Javed

For a graph G without isolated vertices, the inverse degree of a graph G is defined as I D ( G ) = ∑ u ∈ V ( G ) d ( u ) − 1 where d ( u ) is the number of vertices adjacent to the vertex u in G. By replacing − 1 by any non-zero real number we obtain zeroth-order general Randić index, i.e., 0 R γ ( G ) = ∑ u ∈ V ( G ) d ( u ) γ , where γ ∈ R − { 0 } . Xu et al. investigated some lower and upper bounds on I D for a connected graph G in terms of connectivity, chromatic number, number of cut edges, and clique number. In this paper, we extend their results and investigate if the same results hold for γ < 0 . The corresponding extremal graphs have also been identified.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ali Ghalavand ◽  
Ali Reza Ashrafi ◽  
Marzieh Pourbabaee

Suppose G is a simple graph with edge set E G . The Randić index R G is defined as R G = ∑ u v ∈ E G 1 / deg G u deg G v , where deg G u and deg G v denote the vertex degrees of u and v in G , respectively. In this paper, the first and second maximum of Randić index among all n − vertex c − cyclic graphs was computed. As a consequence, it is proved that the Randić index attains its maximum and second maximum on two classes of chemical graphs. Finally, we will present new lower and upper bounds for the Randić index of connected chemical graphs.


2021 ◽  
Vol 6 (10) ◽  
pp. 11084-11096
Author(s):  
Abel Cabrera Martínez ◽  
◽  
Iztok Peterin ◽  
Ismael G. Yero ◽  
◽  
...  

<abstract><p>Let $ G $ be a graph with vertex set $ V(G) $. A function $ f:V(G)\rightarrow \{0, 1, 2\} $ is a Roman dominating function on $ G $ if every vertex $ v\in V(G) $ for which $ f(v) = 0 $ is adjacent to at least one vertex $ u\in V(G) $ such that $ f(u) = 2 $. The Roman domination number of $ G $ is the minimum weight $ \omega(f) = \sum_{x\in V(G)}f(x) $ among all Roman dominating functions $ f $ on $ G $. In this article we study the Roman domination number of direct product graphs and rooted product graphs. Specifically, we give several tight lower and upper bounds for the Roman domination number of direct product graphs involving some parameters of the factors, which include the domination, (total) Roman domination, and packing numbers among others. On the other hand, we prove that the Roman domination number of rooted product graphs can attain only three possible values, which depend on the order, the domination number, and the Roman domination number of the factors in the product. In addition, theoretical characterizations of the classes of rooted product graphs achieving each of these three possible values are given.</p></abstract>


Filomat ◽  
2019 ◽  
Vol 33 (16) ◽  
pp. 5249-5258
Author(s):  
Predrag Milosevic ◽  
Igor Milovanovic ◽  
Emina Milovanovic ◽  
Marjan Matejic

Let G=(V,E), V={v1, v2,..., vn}, be a simple connected graph with n vertices, m edges and vertex degree sequence ? = d1?d2 ?...? dn = ? > 0, di = d(vi). General zeroth-order Randic index of G is defined as 0R?(G) = ?ni =1 d?i , where ? is an arbitrary real number. In this paper we establish relationships between 0R?(G) and 0R?-1(G) and obtain new bounds for 0R?(G). Also, we determine relationship between 0R?(G), 0R?(G) and 0R2?-?(G), where ? and ? are arbitrary real numbers. By the appropriate choice of parameters ? and ?, a number of old/new inequalities for different vertex-degree-based topological indices are obtained.


2021 ◽  
Vol 1 (3) ◽  
pp. 164-171
Author(s):  
Qian Lin ◽  
◽  
Yan Zhu

<abstract><p>Recently the exponential Randić index $ {{\rm e}^{\chi}} $ was introduced. The exponential Randić index of a graph $ G $ is defined as the sum of the weights $ {{\rm e}^{{\frac {1}{\sqrt {d \left(u \right) d \left(v \right) }}}}} $ of all edges $ uv $ of $ G $, where $ d(u) $ denotes the degree of a vertex $ u $ in $ G $. In this paper, we give sharp lower and upper bounds on the exponential Randić index of unicyclic graphs.</p></abstract>


Filomat ◽  
2018 ◽  
Vol 32 (1) ◽  
pp. 165-178
Author(s):  
Suresh Elumalai ◽  
Sunilkumar Hosamani ◽  
Toufik Mansour ◽  
Mohammad Rostami

The inverse degree of a graph G with no isolated vertices is defined as the sum of reciprocal of vertex degrees of the graph G. In this paper, we obtain several lower and upper bounds on inverse degree ID(G). Moreover, using computational results, we prove our upper bound is strong and has the smallest deviation from the inverse degree ID(G). Next, we compare inverse degree ID(G) with topological indices (Randic index R(G), geometric-arithmetic index GA(G)) for chemical trees and also we determine the n-vertex chemical trees with the minimum, the second and the third minimum, as well as the second and the third maximum of ID - R. In addition, we correct the second and third minimum Randic index chemical trees in [16].


10.37236/1583 ◽  
2001 ◽  
Vol 8 (1) ◽  
Author(s):  
Irène Charon ◽  
Iiro Honkala ◽  
Olivier Hudry ◽  
Antoine Lobstein

Consider a connected undirected graph $G=(V,E)$ and a subset of vertices $C$. If for all vertices $v \in V$, the sets $B_r(v) \cap C$ are all nonempty and pairwise distinct, where $B_r(v)$ denotes the set of all points within distance $r$ from $v$, then we call $C$ an $r$-identifying code. We give general lower and upper bounds on the best possible density of $r$-identifying codes in three infinite regular graphs.


Sign in / Sign up

Export Citation Format

Share Document