vertex degrees
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 45)

H-INDEX

16
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Durbar Maji ◽  
Ganesh Ghorai ◽  
Yaé Ulrich Gaba

Topological indices (TIs) are expressed by constant real numbers that reveal the structure of the graphs in QSAR/QSPR investigation. The reformulated second Zagreb index (RSZI) is such a novel TI having good correlations with various physical attributes, chemical reactivities, or biological activities/properties. The RSZI is defined as the sum of products of edge degrees of the adjacent edges, where the edge degree of an edge is taken to be the sum of vertex degrees of two end vertices of that edge with minus 2. In this study, the behaviour of RSZI under graph operations containing Cartesian product, join, composition, and corona product of two graphs has been established. We have also applied these results to compute RSZI for some important classes of molecular graphs and nanostructures.


2021 ◽  
Vol 40 (6) ◽  
pp. 1431-1448
Author(s):  
Ansderson Fernandes Novanta ◽  
Carla Silva Oliveira ◽  
Leonardo de Lima

Let G be a graph on n vertices. The Laplacian matrix of G, denoted by L(G), is defined as L(G) = D(G) −A(G), where A(G) is the adjacency matrix of G and D(G) is the diagonal matrix of the vertex degrees of G. A graph G is said to be L-integral if all eigenvalues of the matrix L(G) are integers. In this paper, we characterize all Lintegral non-bipartite graphs among all connected graphs with at most two vertices of degree larger than or equal to three.


2021 ◽  
Vol 4 ◽  
Author(s):  
Maksudul Alam ◽  
Kalyan Perumalla

Synthetically generated, large graph networks serve as useful proxies to real-world networks for many graph-based applications. The ability to generate such networks helps overcome several limitations of real-world networks regarding their number, availability, and access. Here, we present the design, implementation, and performance study of a novel network generator that can produce very large graph networks conforming to any desired degree distribution. The generator is designed and implemented for efficient execution on modern graphics processing units (GPUs). Given an array of desired vertex degrees and number of vertices for each desired degree, our algorithm generates the edges of a random graph that satisfies the input degree distribution. Multiple runtime variants are implemented and tested: 1) a uniform static work assignment using a fixed thread launch scheme, 2) a load-balanced static work assignment also with fixed thread launch but with cost-aware task-to-thread mapping, and 3) a dynamic scheme with multiple GPU kernels asynchronously launched from the CPU. The generation is tested on a range of popular networks such as Twitter and Facebook, representing different scales and skews in degree distributions. Results show that, using our algorithm on a single modern GPU (NVIDIA Volta V100), it is possible to generate large-scale graph networks at rates exceeding 50 billion edges per second for a 69 billion-edge network. GPU profiling confirms high utilization and low branching divergence of our implementation from small to large network sizes. For networks with scattered distributions, we provide a coarsening method that further increases the GPU-based generation speed by up to a factor of 4 on tested input networks with over 45 billion edges.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Sadik Delen ◽  
Musa Demirci ◽  
Ahmet Sinan Cevik ◽  
Ismail Naci Cangul

Average degree of a graph is defined to be a graph invariant equal to the arithmetic mean of all vertex degrees and has many applications, especially in determining the irregularity degrees of networks and social sciences. In this study, some properties of average degree have been studied. Effect of vertex deletion on this degree has been determined and a new proof of the handshaking lemma has been given. Using a recently defined graph index called o m e g a index, average degree of trees, unicyclic, bicyclic, and tricyclic graphs have been given, and these have been generalized to k -cyclic graphs. Also, the effect of edge deletion has been calculated. The average degree of some derived graphs and some graph operations have been determined.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Akbar Jahanbani ◽  
Maryam Atapour ◽  
Rana Khoeilar

The ℱ -coindex (forgotten topological coindex) for a simple connected graph G is defined as the sum of the terms ζ G 2 y + ζ G 2 x over all nonadjacent vertex pairs x , y of G , where ζ G y and ζ G x are the degrees of the vertices y and x in G , respectively. The ℱ -index of a graph is defined as the sum of cubes of the vertex degrees of the graph. This was introduced in 1972 in the same paper where the first and second Zagreb indices were introduced to study the structure dependency of total π -electron energy. Therefore, considering the importance of the ℱ -index and ℱ -coindex, in this paper, we study these indices, and we present new bounds for the ℱ -index and ℱ -coindex.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2440
Author(s):  
Shafaq Shakeel ◽  
Adeel Anjum ◽  
Alia Asheralieva ◽  
Masoom Alam

With the evolution of Internet technology, social networking sites have gained a lot of popularity. People make new friends, share their interests, experiences in life, etc. With these activities on social sites, people generate a vast amount of data that is analyzed by third parties for various purposes. As such, publishing social data without protecting an individual’s private or confidential information can be dangerous. To provide privacy protection, this paper proposes a new degree anonymization approach k-NDDP, which extends the concept of k-anonymity and differential privacy based on Node DP for vertex degrees. In particular, this paper considers identity disclosures on social data. If the adversary efficiently obtains background knowledge about the victim’s degree and neighbor connections, it can re-identify its victim from the social data even if the user’s identity is removed. The contribution of this paper is twofold. First, a simple and, at the same time, effective method k–NDDP is proposed. The method is the extension of k-NMF, i.e., the state-of-the-art method to protect against mutual friend attack, to defend against identity disclosures by adding noise to the social data. Second, the achieved privacy using the concept of differential privacy is evaluated. An extensive empirical study shows that for different values of k, the divergence produced by k-NDDP for CC, BW and APL is not more than 0.8%, also added dummy links are 60% less, as compared to k-NMF approach, thereby it validates that the proposed k-NDDP approach provides strong privacy while maintaining the usefulness of data.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 233
Author(s):  
Rajat Kanti Nath ◽  
Monalisha Sharma ◽  
Parama Dutta ◽  
Yilun Shang

Let R be a finite ring and r∈R. The r-noncommuting graph of R, denoted by ΓRr, is a simple undirected graph whose vertex set is R and two vertices x and y are adjacent if and only if [x,y]≠r and [x,y]≠−r. In this paper, we obtain expressions for vertex degrees and show that ΓRr is neither a regular graph nor a lollipop graph if R is noncommutative. We characterize finite noncommutative rings such that ΓRr is a tree, in particular a star graph. It is also shown that ΓR1r and ΓR2ψ(r) are isomorphic if R1 and R2 are two isoclinic rings with isoclinism (ϕ,ψ). Further, we consider the induced subgraph ΔRr of ΓRr (induced by the non-central elements of R) and obtain results on clique number and diameter of ΔRr along with certain characterizations of finite noncommutative rings such that ΔRr is n-regular for some positive integer n. As applications of our results, we characterize certain finite noncommutative rings such that their noncommuting graphs are n-regular for n≤6.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1990
Author(s):  
Germain Pastén ◽  
Oscar Rojo ◽  
Luis Medina

For α∈[0,1], let Aα(Gσ)=αD(G)+(1−α)A(Gσ), where G is a simple undirected graph, D(G) is the diagonal matrix of its vertex degrees and A(Gσ) is the adjacency matrix of the signed graph Gσ whose underlying graph is G. In this paper, basic properties of Aα(Gσ) are obtained, its positive semidefiniteness is studied and some bounds on its eigenvalues are derived—in particular, lower and upper bounds on its largest eigenvalue are obtained.


2021 ◽  
Vol 13 (2) ◽  
pp. 377-385
Author(s):  
N. Dehgardi ◽  
H. Aram
Keyword(s):  

The first leap Zagreb index $LM1(G)$ of a graph $G$ is the sum of the squares of its second vertex degrees, that is, $LM_1(G)=\sum_{v\in V(G)}d_2(v/G)^2$, where $d_2(v/G)$ is the number of second neighbors of $v$ in $G$. In this paper, we obtain bounds for the first leap Zagreb index of trees and determine the extremal trees achieving these bounds.


Sign in / Sign up

Export Citation Format

Share Document