scholarly journals Rainfall trend analysis for crop planning under rainfed conditions in district Agra of Uttar Pradesh

MAUSAM ◽  
2021 ◽  
Vol 69 (4) ◽  
pp. 599-606
Author(s):  
K. K. SHARMA ◽  
A. K. SINGH ◽  
S. K. DUBEY
Author(s):  
Bhupendra Dhankar ◽  
Gunja Dhruw

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Upaka Rathnayake

Time series analyses for climatic factors are important in climate predictions. Rainfall is being one of the most important climatic factors in today’s concern for future predictions; thus, many researchers analyze the data series for identifying potential rainfall trends. The literature shows several methods in identifying rainfall trends. However, statistical trend analysis using Mann–Kendall equation and graphical trend analysis are the two widely used and simplest tests in trend analysis. Nevertheless, there are few studies in comparing various methods in the trend analysis to suggest the simplest methods in analyzing rainfall trends. Therefore, this paper presents a comparison analysis of statistical and graphical trend analysis techniques for two tropical catchments in Sri Lanka. Results reveal that, in general, both trend analysis techniques produce comparable results in identifying rainfall trends for different time steps including annual, seasonal, and monthly rainfalls.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1225
Author(s):  
Atul Saini ◽  
Netrananda Sahu ◽  
Pankaj Kumar ◽  
Sridhara Nayak ◽  
Weili Duan ◽  
...  

In this paper, the rainfall trend of the West Coast Plain and Hill Agro-Climatic Region is analyzed for 117 years (1901–2017). This region is a globally recognized biodiversity hotspot and known for one of the highest rainfall receiving regions in India. Rainfall grid dataset is used for the analysis of rainfall trends on monthly, seasonal, and decadal time scales. Modified Mann–Kendall’s test, Linear Regression, Innovative Trend Analysis, Sen’s Slope test, Weibull’s Recurrence Interval, Pearson’s Coefficient of Skewness, Consecutive Disparity Index, Kurtosis, and some other important statistical techniques are employed for trend analysis. Results indicate that the rainfall trend is significant in January, July, August, September as well as the Winter season. Among all the significant trends, January and July showed a decreasing rainfall trend. July has the highest contribution (30%) among all the obtained monotonic trend to annual rainfall and coincidentally has the highest trend magnitude. August and September months with a combined contribution of 30% to annual rainfall, show an increasing monotonic trend with high magnitude whereas Winter season shows a monotonic decreasing rainfall trend with comparatively low magnitudes. Decadal analysis along with the study of recurrence interval of excess and deficit years helps to understand the decadal rhythm of trend and the magnitude of extreme monthly and seasonal events. Skewness reveals that rainfall dataset of all the periodic results is right-skewed and the recurrence interval also supports the skewness results. Sharply decreasing rainfall in July and rising rainfall in August and September is predictive of the impact on agriculture, biodiversity and indicates the rainfall regime shift in the region.


2016 ◽  
Vol 64 (4) ◽  
pp. 311 ◽  
Author(s):  
A.A. Mustafa ◽  
Man Singh ◽  
Nayan Ahmed ◽  
R.N Sahoo ◽  
Manoj Khanna ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document