monotonic trend
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 46)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 13 (24) ◽  
pp. 4957
Author(s):  
Sourav Samanta ◽  
Sugata Hazra ◽  
Partho P. Mondal ◽  
Abhra Chanda ◽  
Sandip Giri ◽  
...  

The Indian Sundarbans, together with Bangladesh, comprise the largest mangrove forest in the world. Reclamation of the mangroves in this region ceased in the 1930s. However, they are still subject to adverse environmental influences, such as sediment starvation due to migration of the main river channels in the Ganges–Brahmaputra delta over the last few centuries, cyclone landfall, wave action from the Bay of Bengal—changing hydrology due to upstream water diversion—and the pervasive effects of relative sea-level rise. This study builds on earlier work to assess changes from 2000 to 2020 in mangrove extent, genus composition, and mangrove ‘health’ indicators, using various vegetation indices derived from Landsat and MODIS satellite imagery by performing maximum likelihood supervised classification. We show that about 110 km2 of mangroves disappeared within the reserve forest due to erosion, and 81 km2 were gained within the inhabited part of Sundarbans Biosphere Reserve (SBR) through plantation and regeneration. The gains are all outside the contiguous mangroves. However, they partially compensate for the losses of the contiguous mangroves in terms of carbon. Genus composition, analyzed by amalgamating data from published literature and ground-truthing surveys, shows change towards more salt-tolerant genus accompanied by a reduction in the prevalence of freshwater-loving Heiritiera, Nypa, and Sonneratia assemblages. Health indicators, such as the enhanced vegetation index (EVI) and normalized differential vegetation index (NDVI), show a monotonic trend of deterioration over the last two decades, which is more pronounced in the sea-facing parts of the mangrove forests. An increase in salinity, a temperature rise, and rainfall reduction in the pre-monsoon and the post-monsoon periods appear to have led to such degradation. Collectively, these results show a decline in mangrove area and health, which poses an existential threat to the Indian Sundarbans in the long term, especially under scenarios of climate change and sea-level rise. Given its unique values, the policy process should acknowledge and address these threats.


Toxics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 297
Author(s):  
Alina Barbulescu ◽  
Lucica Barbes ◽  
Cristian Stefan Dumitriu

Water quality is continuously affected by anthropogenic and environmental conditions. A significant issue of the Indian rivers is the massive water pollution, leading to the spreading of different diseases due to its daily use. Therefore, this study investigates three aspects. The first one is testing the hypothesis of the existence of a monotonic trend of the series of eight water parameters of the Brahmaputra River recorded for 17 years at ten hydrological stations. When this hypothesis was rejected, a loess trend was fitted. The second aspect is to assess the water quality using three indicators (WQI)–CCME WQI, British Colombia, and a weighted index. The third aspect is to group the years and the stations in clusters used to determine the regional (spatial) and temporal trend of the WQI series, utilizing a new algorithm. A statistical analysis does not reject the hypothesis of a monotonic trend presence for the spatially distributed data but not for the temporal ones. Hierarchical clustering based on the computed WQIs detected two clusters for the spatially distributed data and two for the temporal-distributed data. The procedure proposed for determining the WQI temporal and regional evolution provided good results in terms of mean absolute error, root mean squared error (RMSE), and mean absolute percentage error (MAPE).


2021 ◽  
Vol 7 (11) ◽  
pp. 1868-1879
Author(s):  
Jada El Kasri ◽  
Abdelaziz Lahmili ◽  
Halima Soussi ◽  
Imane Jaouda ◽  
Maha Bentaher

The Souss-Massa region in southwestern Morocco is characterized by a semi-arid climate with high variability in rainfall. Frequent droughts and flash flood events combined with overexploitation of water resources in recent decades have had a significant impact on the human security and the economy which is mainly based on agriculture, tourism and fishery. For better management of extreme events and water resources under changing climatic conditions, a study was carried out to quantify the seasonal and annual variability and trends in rainfall and temperature over the past three decades with data from three stations. Climatological representative of the Souss-Massa region. The Mann-Kendall (MK) non-parametric test and the Sen’s slope are used to estimate the monotonic trend and magnitude of the trend of the variables, respectively. Statistical analysis of the rainfall series data set highlights that the occurrence of rainfall is unpredictable and irregular and the both the seasonal and annual rainfall trend appears negative (downward) for all the three climatological stations. The minimum temperature shows a remarkable increasing trend both on annual and seasonal scale while the maximum temperature registers a slightly increasing trend. The study presents some new insights on rainfall and temperature trends that will have significant impacts on the surface and groundwater resources of the region under changing climatic conditions. The results can help to prioritize new strategies to mitigate the risk of droughts, of floods and to manage water resources to sustain the dependence of agriculture tourism and fishery sectors in the region. Doi: 10.28991/cej-2021-03091765 Full Text: PDF


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Xin Huang ◽  
Liangjie Yu

In this paper, we study a platform-led Stackelberg differential game over an infinite planning period considering an industry with two manufacturers competing in a common platform market. One manufacturer invests in R&D and produces green products, and the other produces nongreen products. Three platform advertising strategies are discussed systematically: the platform supports all advertising expenses for both manufacturers (PB), supports only green advertising expenses (PG), and implements a joint advertising plan (PJ) with the green manufacturer. The results reveal that the equilibrium price, R&D effort, and advertising level of products increase as the current green degree increases, while the green degree shows a monotonic trend over time and finally tends to be a stable value. The results also indicate that, in the three models, the green degree and the profits of all players with the PG strategy are the lowest. Compared with the PB strategy, although the PJ strategy may not maximize the profits of all players, from environmental perspective, the strategy would make the alliance achieve the best environmental performance.


2021 ◽  
Vol 18 (183) ◽  
Author(s):  
Sreyashi Chakraborty ◽  
Elizabeth Allmon ◽  
Maria S. Sepúlveda ◽  
Pavlos P. Vlachos

The progression of cardiac gene expression–wall shear stress (WSS) interplay is critical to identifying developmental defects during cardiovascular morphogenesis. However, mechano-genetics from the embryonic to larval stages are poorly understood in vertebrates. We quantified peak WSS in the heart and tail vessels of Japanese medaka from 3 days post fertilization (dpf) to 14 dpf using in vivo micro-particle image velocimetry flow measurements, and in parallel analysed the expression of five cardiac genes ( fgf8 , hoxb6b , bmp4 , nkx2.5 , smyd1 ). Here, we report that WSS in the atrioventricular canal (AVC), ventricular outflow tract (OFT), and the caudal vessels in medaka peak with inflection points at 6 dpf and 10–11 dpf instead of a monotonic trend. Retrograde flows are captured at the AVC and OFT of the medaka heart for the first time. In addition, all genes were upregulated at 3 dpf and 7 dpf, indicating a possible correlation between the two, with the cardiac gene upregulation preceding WSS increase in order to facilitate cardiac wall remodelling.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jesse S. Ko ◽  
Nam Q. Le ◽  
Danielle R. Schlesinger ◽  
Dajie Zhang ◽  
James K. Johnson ◽  
...  

AbstractElectrochemical advanced oxidative processes (EAOP) are a promising route to destroy recalcitrant organic contaminants such as per- and polyfluoroalkyl substances (PFAS) in drinking water. Central to EAOP are catalysis-induced reactive free radicals for breaking the carbon fluorine bonds in PFAS. Generating these reactive species electrochemically at electrodes provides an advantage over other oxidation processes that rely on chemicals or other harsh conditions. Herein, we report on the performance of niobium (Nb) doped rutile titanium oxide (TiO2) as a novel EAOP catalytic material, combining theoretical modeling with experimental synthesis and characterization. Calculations based on density functional theory are used to predict the overpotential for oxygen evolution at these candidate electrodes, which must be high in order to oxidize PFAS. The results indicate a non-monotonic trend in which Nb doping below 6.25 at.% is expected to reduce performance relative to TiO2, while higher concentrations up to 12.5 at.% lead to increased performance, approaching that of state-of-the-art Magnéli Ti4O7. TiO2 samples were synthesized with Nb doping concentration at 10 at.%, heat treated at temperatures from 800 to 1100 °C, and found to exhibit high oxidative stability and high generation of reactive oxygen free radical species. The capability of Nb-doped TiO2 to destroy two common species of PFAS in challenge water was tested, and moderate reduction by ~ 30% was observed, comparable to that of Ti4O7 using a simple three-electrode configuration. We conclude that Nb-doped TiO2 is a promising alternative EAOP catalytic material with increased activity towards generating reactive oxygen species and warrants further development for electrochemically destroying PFAS contaminants.


2021 ◽  
Author(s):  
Dang Nguyen Dong Phuong ◽  
Nguyen Thi Huyen ◽  
Nguyen Duy Liem ◽  
Nguyen Thi Hong ◽  
Dang Kien Cuong ◽  
...  

Abstract Understanding past changes in the characteristics of climate extremes (such as frequency, intensity, and duration) forms an essential part of viable countermeasures to cope with climate-induced risks under a rapidly warming world. Thus, this paper endeavored to explore possible non-monotonic trend components in heavy rainfall events over the Central Highlands of Vietnam by employing the Şen’s innovative trend analysis (ITA) method in conjunction with the well-defined extreme rainfall indices developed by the Joint CCl/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI). The outcomes show that the overall trends in most extreme rainfall indices exhibited significant increases at several stations. Moreover, the high-value subgroups of most analyzed indices (such as maximum 5-day precipitation amount (Rx5day), simple daily intensity index (SDII), very wet days (R95p), extremely wet days (R99p), number of extremely heavy precipitation days (R50mm), and consecutive dry days (CDD)) were characterized mainly by significant increasing trends, thereby implying that heavy rainfall events have become more frequent and intense over recent decades. Some stations also exposed significant increasing trend behaviors in a given extreme index within all low-, medium-, and high-value subgroups. In general, it is expected that these findings yield more insightful knowledge on rainfall extremes to local decision-makers and other stakeholders.


Author(s):  
Madhusudhan M S

Climate change is mostly driven by global warming. Climate change is one of the most critical long-term development issues, particularly for developing countries like India. India is one of the world's most climatically diverse countries, making it sensitive to climatic change and impacting the livelihoods of millions of people who rely on agriculture. Temperature and its fluctuation have direct and indirect impacts on crop development in the agricultural sector. Understanding the temperature and its variability in a changing environment would aid in improved decision-making and suggest feasible adaption strategies. The present study focuses on temperature trend analysis in Mandya city, Karnataka, India. The analysis was carried out through the non-parametric Mann-Kendall test and Sen's slope estimator. The findings demonstrate that, there has been a rising trend in temperature in the study area over the last 30 years as a result of climate change. From the analysis, there is a significant positive trend for all the seasons considered for the significance level of 90%, 95% and 99%. The magnitude of the increasing trend will be in the range of 0.46 °C/year for the average time series. Also, there will be an average increase of 0.07 °C/year for the various scenarios considered in Mandya city for the Maximum temperature series.


2021 ◽  
Vol 25 (7) ◽  
pp. 573-578
Author(s):  
A. Moran ◽  
L. Lebona ◽  
G. Makgopa ◽  
Y. Nkwane ◽  
C. Dlamini ◽  
...  

BACKGROUND: Despite decreasing incidence of TB in South Africa, people with TB continue to be missed by facility-based case-finding interventions, and agricultural workers suffer disproportionately from limited access to services. We implemented two community-based active case-finding strategies to engage agricultural workers and assessed the cost of these interventions.METHODS: We summarized costs for two interventions – one led by enrolled nurses and one by non-governmental organizations (NGOs) – from April 2017 to December 2019, and calculated cost per person reached by services, screened for TB, identified as having TB and started on TB treatment. We performed Mann-Kendall tests of monotonic trend and conducted a sensitivity analysis of intervention costs.RESULTS: The enrolled nurses-led implementation started 442 people on TB treatment at a cost of US$118 per person, with decreasing trend in costs over the implementation period (P = 0.005). The NGO-led intervention started 160 people on treatment at a cost of US$554 per person, with decreasing trend in costs over the implementation period (P = 0.004).CONCLUSION: Community-based case-finding strategies find TB patients who would be missed by the health system. These strategies should be scaled up to close the missing cases gap in South Africa and to meet UN targets for ending TB.


2021 ◽  
Author(s):  
Nirasindhu Desinayak ◽  
Anup Krishna Prasad ◽  
Hesham El-Askary ◽  
Menas Kafatos ◽  
Ghassem R. Asrar

Abstract. Snow cover changes has a direct bearing on the regional and global energy and water cycles, and the change in Earth's climate condition The study of long term altitudinal (spatial and temporal, 2000–2017) in the coverage of snow and glaciers in one of the world’s largest mountainous region, the Hindu Kush Himalayan (HKH) region including Tibet have been studied using remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra (at 5 km grid resolution). Terra provided a unique opportunity to study zonal and hypsographic changes in the intra-annual (growing season and melting season) and inter-annual variations of snow and glacial cover over the HKH region (2000–2017). The zonal and altitudinal (hypsographic) analyses were carried out for melting-season and accumulating-season. The altitude-wise linear trend analysis (Pearson’s) of snow cover, shown as a hypsographic curve, clearly indicate a major decline in snow cover (average of 5 % or more, at 100 m interval aggregates) between 4000–4500 m and 5500–6000 m altitudes, which is consistent with the median trend (Theil-Sen, TS) and the monotonic trend (Mann-Kendall statistics, MK) analysis. The regions and altitudes where major and statistically significant increase (10 to 30 %) or decrease (−10 to −30 %) in snow cover are identified. The extrapolation of the altitude-wise linear trend shows that it may take between ~74 to 7900 year (for 3001–6000 m and 6000–7000 m altitude zones respectively) for mean snow cover to decline approximately 25 % in the HKH region, assuming no-change in other parameters) that affect the snow cover.


Sign in / Sign up

Export Citation Format

Share Document