scholarly journals Recent developments in classical density functional theory: Internal energy functional and diagrammatic structure of fundamental measure theory

2012 ◽  
Vol 15 (4) ◽  
pp. 43603 ◽  
Author(s):  
Schmidt ◽  
Burgis ◽  
Dwandaru ◽  
Leithall ◽  
Hopkins
2004 ◽  
Vol 18 (02n03) ◽  
pp. 73-82 ◽  
Author(s):  
ROBERT K. NESBET

Due to efficient scaling with electron number N, density functional theory (DFT) is widely used for studies of large molecules and solids. Restriction of an exact mean-field theory to local potential functions has recently been questioned. This review summarizes motivation for extending current DFT to include nonlocal one-electron potentials, and proposes methodology for implementation of the theory. The theoretical model, orbital functional theory (OFT), is shown to be exact in principle for the general N-electron problem. In practice it must depend on a parametrized correlation energy functional. Functionals are proposed suitable for short-range Coulomb-cusp correlation and for long-range polarization response correlation. A linearized variational cellular method (LVCM) is proposed as a common formalism for molecules and solids. Implementation of nonlocal potentials is reduced to independent calculations for each inequivalent atomic cell.


Sign in / Sign up

Export Citation Format

Share Document