scholarly journals Arithmetic Triangle

2017 ◽  
Vol 9 (2) ◽  
pp. 100
Author(s):  
Luis Dias Ferreira

The product of the first $n$ terms of an arithmetic progression may be developed in a polynomial of $n$ terms. Each one of them presents a coefficient $C_{nk}$ that is independent from the initial term and the common difference of the progression. The most interesting point is that one may construct an "Arithmetic Triangle'', displaying these coefficients, in a similar way one does with Pascal's Triangle. Moreover, some remarkable properties, mainly concerning factorials, characterize the Triangle. Other related `triangles' -- eventually treated as matrices -- also display curious facts, in their linear \emph{modus operandi}, such as successive "descendances''.

2015 ◽  
Vol 2015 ◽  
pp. 1-4 ◽  
Author(s):  
Martin Bača ◽  
Zuzana Kimáková ◽  
Andrea Semaničová-Feňovčíková ◽  
Muhammad Awais Umar

A simple graphGadmits anH-covering if every edge inE(G)belongs to a subgraph ofGisomorphic toH. The graphGis said to be (a,d)-H-antimagic if there exists a bijection from the vertex setV(G)and the edge setE(G)onto the set of integers1, 2, …,VG+E(G)such that, for all subgraphsH′ofGisomorphic toH, the sum of labels of all vertices and edges belonging toH′constitute the arithmetic progression with the initial termaand the common differenced.Gis said to be a super (a,d)-H-antimagic if the smallest possible labels appear on the vertices. In this paper, we study super tree-antimagic total labelings of disjoint union of graphs.


2019 ◽  
Vol 24 (4) ◽  
pp. 247-254
Author(s):  
Marilyn Howard

The less you know about the patterns in Pascal's triangle, the more fun you will have discovering the triangle's many secrets. I am amazed at how few students and even teachers (especially at the middle school level) have ever explored Pascal's triangle. Although this famous triangle bears the name of Blaise Pascal (1623-1662), who saw many of the patterns when he was only thirteen years old, it had been around for centuries before he was born. See the ancient diagram in figure 1, which appeared at the front of a Chinese book in 1303 (Vakil 2008). Evidence suggests that the properties of the elements of Pascal's triangle were known before the common era. Students and teachers alike can enjoy exploring patterns through problem solving with Pascal's triangle.


2004 ◽  
Vol 47 (3) ◽  
pp. 373-388 ◽  
Author(s):  
K. Győry ◽  
L. Hajdu ◽  
N. Saradha

AbstractWe show that the product of four or five consecutive positive terms in arithmetic progression can never be a perfect power whenever the initial term is coprime to the common difference of the arithmetic progression. This is a generalization of the results of Euler and Obláth for the case of squares, and an extension of a theorem of Győry on three terms in arithmetic progressions. Several other results concerning the integral solutions of the equation of the title are also obtained. We extend results of Sander on the rational solutions of the equation in n, y when b = d = 1. We show that there are only finitely many solutions in n, d, b, y when k ≥ 3, l ≥ 2 are fixed and k + l > 6.


2016 ◽  
Vol 94 (2) ◽  
pp. 201-207 ◽  
Author(s):  
MARTIN BAČA ◽  
MIRKA MILLER ◽  
JOE RYAN ◽  
ANDREA SEMANIČOVÁ-FEŇOVČÍKOVÁ

A simple graph $G=(V,E)$ admits an $H$-covering if every edge in $E$ belongs to at least one subgraph of $G$ isomorphic to a given graph $H$. Then the graph $G$ is $(a,d)$-$H$-antimagic if there exists a bijection $f:V\cup E\rightarrow \{1,2,\ldots ,|V|+|E|\}$ such that, for all subgraphs $H^{\prime }$ of $G$ isomorphic to $H$, the $H^{\prime }$-weights, $wt_{f}(H^{\prime })=\sum _{v\in V(H^{\prime })}f(v)+\sum _{e\in E(H^{\prime })}f(e)$, form an arithmetic progression with the initial term $a$ and the common difference $d$. When $f(V)=\{1,2,\ldots ,|V|\}$, then $G$ is said to be super $(a,d)$-$H$-antimagic. In this paper, we study super $(a,d)$-$H$-antimagic labellings of a disjoint union of graphs for $d=|E(H)|-|V(H)|$.


1941 ◽  
Vol 25 (264) ◽  
pp. 118
Author(s):  
G. A. Garreau

1992 ◽  
Vol 99 (6) ◽  
pp. 538-544 ◽  
Author(s):  
Andreas M. Hinz

2012 ◽  
Vol 96 (536) ◽  
pp. 213-220
Author(s):  
Harlan J. Brothers

Pascal's triangle is well known for its numerous connections to probability theory [1], combinatorics, Euclidean geometry, fractal geometry, and many number sequences including the Fibonacci series [2,3,4]. It also has a deep connection to the base of natural logarithms, e [5]. This link to e can be used as a springboard for generating a family of related triangles that together create a rich combinatoric object.2. From Pascal to LeibnizIn Brothers [5], the author shows that the growth of Pascal's triangle is related to the limit definition of e.Specifically, we define the sequence sn; as follows [6]:


1963 ◽  
Vol 47 (359) ◽  
pp. 57
Author(s):  
Robert Croasdale

2016 ◽  
Vol 3 (1) ◽  
pp. 1264176 ◽  
Author(s):  
Kantaphon Kuhapatanakul ◽  
Lishan Liu

Sign in / Sign up

Export Citation Format

Share Document