scholarly journals Determination of Fatigue Crack Growth Trajectory and Residual Life under Mixed Modes

2014 ◽  
Vol 60 (4) ◽  
pp. 250-254 ◽  
Author(s):  
Marija Blažić ◽  
Stevan Maksimović ◽  
Zlatko Petrović ◽  
Ivana Vasović ◽  
Dragana Turnić
1986 ◽  
Vol 35 (395) ◽  
pp. 930-935 ◽  
Author(s):  
Toshimitsu YOKOBORI ◽  
Takeo YOKOBORI ◽  
Kenji ISHII ◽  
Kiyoshi SATO ◽  
Kazuo SHYOJI

2022 ◽  
pp. 1-15
Author(s):  
M. Mlikota

For most engineering alloys, the long fatigue crack growth under a certain stress level can be described by the Paris law. The law provides a correlation between the fatigue crack growth rate (FCGR or da/dN), the range of stress intensity factor (ΔK), and the material constants C and m. A well-established test procedure is typically used to determine the Paris law constants C and m, considering standard specimens, notched and pre-cracked. Definition of all the details necessary to obtain feasible and comparable Paris law constants are covered by standards. However, these cost-expensive tests can be replaced by appropriate numerical calculations. In this respect, this paper deals with the numerical determination of Paris law constants for carbon steel using a two-scale model. A micro-model containing the microstructure of a material is generated using the Finite Element Method (FEM) to calculate the fatigue crack growth rate at a crack tip. The model is based on the Tanaka-Mura equation. On the other side, a macro-model serves for the calculation of the stress intensity factor. The analysis yields a relationship between the crack growth rates and the stress intensity factors for defined crack lengths which is then used to determine the Paris law constants.


2013 ◽  
Vol 40 (2) ◽  
pp. 247-261
Author(s):  
Stevan Maksimovic ◽  
Katarina Maksimovic

This work considers the numerical computation methods and procedures for the fatigue crack growth predicting of cracked notched structural components. Computation method is based on fatigue life prediction using the strain energy density approach. Based on the strain energy density (SED) theory, a fatigue crack growth model is developed to predict the lifetime of fatigue crack growth for single or mixed mode cracks. The model is based on an equation expressed in terms of low cycle fatigue parameters. Attention is focused on crack growth analysis of structural components under variable amplitude loads. Crack growth is largely influenced by the effect of the plastic zone at the front of the crack. To obtain efficient computation model plasticity-induced crack closure phenomenon is considered during fatigue crack growth. The use of the strain energy density method is efficient for fatigue crack growth prediction under cyclic loading in damaged structural components. Strain energy density method is easy for engineering applications since it does not require any additional determination of fatigue parameters (those would need to be separately determined for fatigue crack propagation phase), and low cyclic fatigue parameters are used instead. Accurate determination of fatigue crack closure has been a complex task for years. The influence of this phenomenon can be considered by means of experimental and numerical methods. Both of these models are considered. Finite element analysis (FEA) has been shown to be a powerful and useful tool1,6 to analyze crack growth and crack closure effects. Computation results are compared with available experimental results.


2019 ◽  
Vol 11 (4) ◽  
pp. 547-555
Author(s):  
Shuji Tomaru ◽  
Akiyuki Takahashi

Purpose Since the most of structures and structural components suffers from cyclic loadings, the study on the fatigue failure due to the crack growth has a great importance. The purpose of this paper is to present a three-dimensional fatigue crack growth simulation of embedded cracks using s-version finite element method (SFEM). Using the numerical results, the validity of the fitness-for-service (FFS) code evaluation method is verified. Design/methodology/approach In this paper, three-dimensional fatigue crack propagation analysis of embedded cracks is performed using the SFEM. SFEM is a numerical analysis method in which the shape of the structure is represented by a global mesh, and cracks are modeled by local meshes independently. The independent global and local meshes are superimposed to obtain the displacement solution of the problem simultaneously. Findings The fatigue crack growth of arbitrary shape of cracks is slow compared to that of the simplified circular crack and the crack approximated based on the FFS code of the Japan Society of Mechanical Engineers (JSME). The results tell us that the FFS code of JSME can provide a conservative evaluation of the fatigue crack growth and the residual life time. Originality/value This paper presents a three-dimensional fatigue crack growth simulation of embedded cracks using SFEM. Using this method, it is possible to apply mixed mode loads to complex shaped cracks that are closer to realistic conditions.


Sign in / Sign up

Export Citation Format

Share Document