Wiener Index of k-Connected Graphs

2021 ◽  
pp. 2142005
Author(s):  
Xiang Qin ◽  
Yanhua Zhao ◽  
Baoyindureng Wu

The Wiener index [Formula: see text] of a connected graph [Formula: see text] is the sum of distances of all pairs of vertices in [Formula: see text]. In this paper, we show that for any even positive integer [Formula: see text], and [Formula: see text], if [Formula: see text] is a [Formula: see text]-connected graph of order [Formula: see text], then [Formula: see text], where [Formula: see text] is the [Formula: see text]th power of a graph [Formula: see text]. This partially answers an old problem of Gutman and Zhang.

Author(s):  
Hanyuan Deng ◽  
G. C. Keerthi Vasan ◽  
S. Balachandran

The Wiener index [Formula: see text] of a connected graph [Formula: see text] is the sum of distances between all pairs of vertices of [Formula: see text]. A connected graph [Formula: see text] is said to be a cactus if each of its blocks is either a cycle or an edge. Let [Formula: see text] be the set of all [Formula: see text]-vertex cacti containing exactly [Formula: see text] cycles. Liu and Lu (2007) determined the unique graph in [Formula: see text] with the minimum Wiener index. Gutman, Li and Wei (2017) determined the unique graph in [Formula: see text] with maximum Wiener index. In this paper, we present the second-minimum Wiener index of graphs in [Formula: see text] and identify the corresponding extremal graphs, which solve partially the problem proposed by Gutman et al. [Cacti with [Formula: see text]-vertices and [Formula: see text] cycles having extremal Wiener index, Discrete Appl. Math. 232 (2017) 189–200] in 2017.


2018 ◽  
Vol 12 (2) ◽  
pp. 297-317
Author(s):  
Encarnación Abajo ◽  
Rocío Casablanca ◽  
Ana Diánez ◽  
Pedro García-Vázquez

Let G be a connected graph with n vertices and let k be an integer such that 2 ? k ? n. The generalized connectivity kk(G) of G is the greatest positive integer l for which G contains at least l internally disjoint trees connecting S for any set S ? V (G) of k vertices. We focus on the generalized connectivity of the strong product G1 _ G2 of connected graphs G1 and G2 with at least three vertices and girth at least five, and we prove the sharp bound k3(G1 _ G2) ? k3(G1)_3(G2) + k3(G1) + k3(G2)-1.


2016 ◽  
Vol 47 (2) ◽  
pp. 163-178
Author(s):  
Mahdieh Azari ◽  
Ali Iranmanesh

The vertex-edge Wiener index of a simple connected graph $G$ is defined as the sum of distances between vertices and edges of $G$. The vertex-edge Wiener polynomial of $G$ is a generating function whose first derivative is a $q-$analog of the vertex-edge Wiener index. Two possible distances $D_1(u, e|G)$ and $D_2(u, e|G)$ between a vertex $u$ and an edge $e$ of $G$ can be considered and corresponding to them, the first and second vertex-edge Wiener indices of $G$, and the first and second vertex-edge Wiener polynomials of $G$ are introduced. In this paper, we study the behavior of these indices and polynomials under the join and corona product of graphs. Results are applied for some classes of graphs such as suspensions, bottlenecks, and thorny graphs.


2019 ◽  
Vol 53 (3) ◽  
pp. 723-730 ◽  
Author(s):  
Sizhong Zhou

For a set ℋ of connected graphs, a spanning subgraph H of a graph G is called an ℋ-factor of G if every component of H is isomorphic to a member ofℋ. An H-factor is also referred as a component factor. If each component of H is a star (resp. path), H is called a star (resp. path) factor. By a P≥ k-factor (k positive integer) we mean a path factor in which each component path has at least k vertices (i.e. it has length at least k − 1). A graph G is called a P≥ k-factor covered graph, if for each edge e of G, there is a P≥ k-factor covering e. In this paper, we prove that (1) a graph G has a {K1,1,K1,2, … ,K1,k}-factor if and only if bind(G) ≥ 1/k, where k ≥ 2 is an integer; (2) a connected graph G is a P≥ 2-factor covered graph if bind(G) > 2/3; (3) a connected graph G is a P≥ 3-factor covered graph if bind(G) ≥ 3/2. Furthermore, it is shown that the results in this paper are best possible in some sense.


2020 ◽  
Vol 12 (05) ◽  
pp. 2050071
Author(s):  
A. Lourdusamy ◽  
T. Mathivanan

The [Formula: see text]-pebbling number, [Formula: see text], of a connected graph [Formula: see text], is the smallest positive integer such that from every placement of [Formula: see text] pebbles, [Formula: see text] pebbles can be moved to any specified target vertex by a sequence of pebbling moves, each move taking two pebbles off a vertex and placing one on an adjacent vertex. A graph [Formula: see text] satisfies the [Formula: see text]-pebbling property if [Formula: see text] pebbles can be moved to any specified vertex when the total starting number of pebbles is [Formula: see text], where [Formula: see text] is the number of vertices with at least one pebble. We show that the cycle [Formula: see text] satisfies the [Formula: see text]-pebbling property. Herscovici conjectured that for any connected graphs [Formula: see text] and [Formula: see text], [Formula: see text]. We prove Herscovici’s conjecture is true, when [Formula: see text] is an even cycle and for variety of graphs [Formula: see text] which satisfy the [Formula: see text]-pebbling property.


2018 ◽  
Vol 34 ◽  
pp. 459-471 ◽  
Author(s):  
Shuting Liu ◽  
Jinlong Shu ◽  
Jie Xue

Let $G=(V(G),E(G))$ be a $k$-connected graph with $n$ vertices and $m$ edges. Let $D(G)$ be the distance matrix of $G$. Suppose $\lambda_1(D)\geq \cdots \geq \lambda_n(D)$ are the $D$-eigenvalues of $G$. The transmission of $v_i \in V(G)$, denoted by $Tr_G(v_i)$ is defined to be the sum of distances from $v_i$ to all other vertices of $G$, i.e., the row sum $D_{i}(G)$ of $D(G)$ indexed by vertex $v_i$ and suppose that $D_1(G)\geq \cdots \geq D_n(G)$. The $Wiener~ index$ of $G$ denoted by $W(G)$ is given by $W(G)=\frac{1}{2}\sum_{i=1}^{n}D_i(G)$. Let $Tr(G)$ be the $n\times n$ diagonal matrix with its $(i,i)$-entry equal to $TrG(v_i)$. The distance signless Laplacian matrix of $G$ is defined as $D^Q(G)=Tr(G)+D(G)$ and its spectral radius is denoted by $\rho_1(D^Q(G))$ or $\rho_1$. A connected graph $G$ is said to be $t$-transmission-regular if $Tr_G(v_i) =t$ for every vertex $v_i\in V(G)$, otherwise, non-transmission-regular. In this paper, we respectively estimate $D_1(G)-\lambda_1(G)$ and $2D_1(G)-\rho_1(G)$ for a $k$-connected non-transmission-regular graph in different ways and compare these obtained results. And we conjecture that $D_1(G)-\lambda_1(G)>\frac{1}{n+1}$. Moreover, we show that the conjecture is valid for trees.


2020 ◽  
Vol 13 (5) ◽  
pp. 1231-1240
Author(s):  
Büşra Aydın ◽  
Nihat Akgüneş ◽  
İsmail Naci Cangül

Algebraic study of graphs is a relatively recent subject which arose in two main streams: One is named as the spectral graph theory and the second one deals with graphs over several algebraic structures. Topological graph indices are widely-used tools in especially molecular graph theory and mathematical chemistry due to their time and money saving applications. The Wiener index is one of these indices which is equal to the sum of distances between all pairs of vertices in a connected graph. The graph over the nite dot product of monogenic semigroups has recently been dened and in this paper, some results on the Wiener index of the dot product graph over monogenic semigroups are given.


Author(s):  
Hilal A. Ganie ◽  
Abdollah Alhevaz ◽  
Maryam Baghipur

In this paper, we study the generalized distance matrix [Formula: see text] assigned to simple connected graph [Formula: see text], which is the convex combinations of Tr[Formula: see text] and [Formula: see text] and defined as [Formula: see text] where [Formula: see text] and Tr[Formula: see text] denote the distance matrix and diagonal matrix of the vertex transmissions of a simple connected graph [Formula: see text], respectively. Denote with [Formula: see text], the generalized distance eigenvalues of [Formula: see text]. For [Formula: see text], let [Formula: see text] and [Formula: see text] be, respectively, the sum of [Formula: see text]-largest generalized distance eigenvalues and the sum of [Formula: see text]-smallest generalized distance eigenvalues of [Formula: see text]. We obtain bounds for [Formula: see text] and [Formula: see text] in terms of the order [Formula: see text], the Wiener index [Formula: see text] and parameter [Formula: see text]. For a graph [Formula: see text] of diameter 2, we establish a relationship between the [Formula: see text] and the sum of [Formula: see text]-largest generalized adjacency eigenvalues of the complement [Formula: see text]. We characterize the connected bipartite graph and the connected graphs with given independence number that attains the minimum value for [Formula: see text]. We also obtain some bounds for the graph invariants [Formula: see text] and [Formula: see text].


Filomat ◽  
2012 ◽  
Vol 26 (4) ◽  
pp. 637-648 ◽  
Author(s):  
Rundan Xing ◽  
Bo Zhou

The Wiener index W(G) of a connected graph G is defined as the sum of distances between all unordered pairs of vertices of G. As a variation of the Wiener index, the reverse Wiener index of G is defined as ?(G) = ? n(n ? 1)d ? W(G), where n is the number of vertices, and d is the diameter of G. It is known that the star is the unique n-vertex tree with the smallest reverse Wiener index. We now determine the second and the third smallest reverse Wiener indices of n-vertex trees, and characterize the trees whose reverse Wiener indices attain these values for n ? 5.


2020 ◽  
Vol 12 (03) ◽  
pp. 2050038
Author(s):  
J. John

A total Steiner set of [Formula: see text] is a Steiner set [Formula: see text] such that the subgraph [Formula: see text] induced by [Formula: see text] has no isolated vertex. The minimum cardinality of a total Steiner set of [Formula: see text] is the total Steiner number of [Formula: see text] and is denoted by [Formula: see text]. Some general properties satisfied by this concept are studied. Connected graphs of order [Formula: see text] with total Steiner number 2 or 3 are characterized. We partially characterized classes of graphs of order [Formula: see text] with total Steiner number equal to [Formula: see text] or [Formula: see text] or [Formula: see text]. It is shown that [Formula: see text]. It is shown that for every pair k, p of integers with [Formula: see text], there exists a connected graph [Formula: see text] of order [Formula: see text] such that [Formula: see text]. Also, it is shown that for every positive integer [Formula: see text], [Formula: see text] and [Formula: see text] with [Formula: see text], there exists a connected graph [Formula: see text] of order [Formula: see text] such that [Formula: see text] and [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document