scholarly journals Signed strong Roman domination in graphs

2017 ◽  
Vol 48 (2) ◽  
pp. 135-147 ◽  
Author(s):  
Seyed Mahmoud Sheikholeslami ◽  
Rana Khoeilar ◽  
Leila Asgharsharghi

Let $G=(V,E)$ be a finite and simple graph of order $n$ and maximum degree $\Delta$. A signed strong Roman dominating function (abbreviated SStRDF) on a graph $G$ is a function $f:V\to \{-1,1,2,\ldots,\lceil\frac{\Delta}{2}\rceil+1\}$ satisfying the conditions that (i) for every vertex $v$ of $G$, $\sum_{u\in N[v]} f(u)\ge 1$, where $N[v]$ is the closed neighborhood of $v$ and (ii) every vertex $v$ for which $f(v)=-1$ is adjacent to at least one vertex $u$ for which $f(u)\ge 1+\lceil\frac{1}{2}|N(u)\cap V_{-1}|\rceil$, where $V_{-1}=\{v\in V \mid f(v)=-1\}$. The minimum of the values $\sum_{v\in V} f(v)$, taken over all signed strong Roman dominating functions $f$ of $G$, is called the signed strong Roman domination number of $G$ and is denoted by $\gamma_{ssR}(G)$. In this paper we initiate the study of the signed strong Roman domination in graphs and present some (sharp) bounds for this parameter.

2020 ◽  
Vol 12 (02) ◽  
pp. 2050028
Author(s):  
A. Mahmoodi

Let [Formula: see text] be a finite and simple graph of order [Formula: see text] and maximum degree [Formula: see text]. A signed strong Roman dominating function on a graph [Formula: see text] is a function [Formula: see text] satisfying the conditions that (i) for every vertex [Formula: see text] of [Formula: see text], [Formula: see text], where [Formula: see text] is the closed neighborhood of [Formula: see text] and (ii) every vertex [Formula: see text] for which [Formula: see text] is adjacent to at least one vertex [Formula: see text] for which [Formula: see text], where [Formula: see text]. The minimum of the values [Formula: see text], taken over all signed strong Roman dominating functions [Formula: see text] of [Formula: see text], is called the signed strong Roman domination number of [Formula: see text] and is denoted by [Formula: see text]. In this paper, we continue the study signed strong Roman domination number of a graph and give several bounds for this parameter. Then, among other results, we determine the signed strong Roman domination number of special classes of graphs.


Author(s):  
S. Anandha Prabhavathy

A Majority Roman Dominating Function (MRDF) on a graph [Formula: see text] is a function [Formula: see text] satisfying the conditions that (i) the sum of its function values over at least half the closed neighborhood is at least one and (ii) every vertex [Formula: see text] for which [Formula: see text] is adjacent to at least one vertex [Formula: see text] for which [Formula: see text]. The weight of a MRDF is the sum of its function values over all vertices. The Majority Roman Domination Number of a graph [Formula: see text], denoted by [Formula: see text], is defined as [Formula: see text]. In this paper, we initiate the study of Majority Roman Domination in Graphs.


Author(s):  
P. Roushini Leely Pushpam ◽  
B. Mahavir ◽  
M. Kamalam

Let [Formula: see text] be a graph and [Formula: see text] be a Roman dominating function defined on [Formula: see text]. Let [Formula: see text] be some ordering of the vertices of [Formula: see text]. For any [Formula: see text], [Formula: see text] is defined by [Formula: see text]. If for all [Formula: see text], [Formula: see text], we have [Formula: see text], that is [Formula: see text], for some [Formula: see text], then [Formula: see text] is called a resolving Roman dominating function (RDF) on [Formula: see text]. The weight of a resolving RDF [Formula: see text] on [Formula: see text] is [Formula: see text]. The minimum weight of a resolving RDF on [Formula: see text] is called the resolving Roman domination number of [Formula: see text] and is denoted by [Formula: see text]. A resolving RDF on [Formula: see text] with weight [Formula: see text] is called a [Formula: see text]-function on [Formula: see text]. In this paper, we find the resolving Roman domination number of certain well-known classes of graphs. We also categorize the class of graphs whose resolving Roman domination number equals their order.


2020 ◽  
Vol 12 (02) ◽  
pp. 2050020
Author(s):  
S. Nazari-Moghaddam ◽  
L. Volkmann

A double Roman dominating function (DRDF) on a graph [Formula: see text] is a function [Formula: see text] such that (i) every vertex [Formula: see text] with [Formula: see text] is adjacent to at least two vertices assigned a [Formula: see text] or to at least one vertex assigned a [Formula: see text] and (ii) every vertex [Formula: see text] with [Formula: see text] is adjacent to at least one vertex [Formula: see text] with [Formula: see text] The weight of a DRDF is the sum of its function values over all vertices. The double Roman domination number [Formula: see text] equals the minimum weight of a DRDF on [Formula: see text] The concept of criticality with respect to various operations on graphs has been studied for several domination parameters. In this paper, we study the concept of criticality for double Roman domination in graphs. In addition, we characterize double Roman domination edge super critical graphs and we will give several characterizations for double Roman domination vertex (edge) critical graphs.


2018 ◽  
Vol 11 (03) ◽  
pp. 1850034 ◽  
Author(s):  
J. Amjadi ◽  
M. Soroudi

Let [Formula: see text] be a finite simple digraph with vertex set [Formula: see text] and arc set [Formula: see text]. A twin signed total Roman dominating function (TSTRDF) on the digraph [Formula: see text] is a function [Formula: see text] satisfying the conditions that (i) [Formula: see text] and [Formula: see text] for each [Formula: see text], where [Formula: see text] (respectively [Formula: see text]) consists of all in-neighbors (respectively out-neighbors) of [Formula: see text], and (ii) every vertex [Formula: see text] for which [Formula: see text] has an in-neighbor [Formula: see text] and an out-neighbor [Formula: see text] with [Formula: see text]. The weight of an TSTRDF [Formula: see text] is [Formula: see text]. The twin signed total Roman domination number [Formula: see text] of [Formula: see text] is the minimum weight of an TSTRDF on [Formula: see text]. In this paper, we initiate the study of twin signed total Roman domination in digraphs and we present some sharp bounds on [Formula: see text]. In addition, we determine the twin signed Roman domination number of some classes of digraphs.


Author(s):  
Hossein Abdollahzadeh Ahangar ◽  
Jafar Amjadi ◽  
Mustapha Chellali ◽  
S. Kosari ◽  
Vladimir Samodivkin ◽  
...  

Let $G=(V,E)$ be a simple graph with vertex set $V$ and edge set $E$. A mixed Roman dominating function (MRDF) of $G$ is a function $f:V\cup E\rightarrow \{0,1,2\}$ satisfying the condition that every element $x\in V\cup E$ for which $f(x)=0$ is adjacent or incident to at least one element $% y\in V\cup E$ for which $f(y)=2$. The weight of a mixed Roman dominating function $f$ is $\omega (f)=\sum_{x\in V\cup E}f(x)$. The mixed Roman domination number $\gamma _{R}^{\ast }(G)$ of $G$ is the minimum weight of a mixed Roman dominating function of $G$. We first show that the problem of computing $\gamma _{R}^{\ast }(G)$ is NP-complete for bipartite graphs and then we present upper and lower bounds on the mixed Roman domination number, some of them are for the class of trees.


2016 ◽  
Vol 47 (4) ◽  
pp. 421-431
Author(s):  
Seyed Mahmoud Sheikholeslami ◽  
Nasrin Dehgardi ◽  
Lutz Volkmann ◽  
Dirk Meierling

Let $D=(V,A)$ be a finite and simple digraph. A  Roman dominating function on $D$ is a labeling $f:V (D)\rightarrow \{0, 1, 2\}$ such that every vertex with label 0 has an in-neighbor with label 2. The weight of an RDF $f$ is the value $\omega(f)=\sum_{v\in V}f (v)$. The minimum weight of a Roman dominating function on a digraph $D$ is called the Roman domination number, denoted by $\gamma_{R}(D)$. The Roman bondage number $b_{R}(D)$ of a digraph $D$ with maximum out-degree at least two is the minimum cardinality of all sets $A'\subseteq A$ for which $\gamma_{R}(D-A')>\gamma_R(D)$. In this paper, we initiate the study of the Roman bondage number of a digraph. We determine the Roman bondage number in several classes of digraphs and give some sharp bounds.


2019 ◽  
Vol 13 (08) ◽  
pp. 2050140
Author(s):  
N. Dehgardi ◽  
S. M. Sheikholeslami ◽  
M. Soroudi ◽  
L. Volkmann

Let [Formula: see text] be a graph and let [Formula: see text] be a function. A vertex [Formula: see text] is protected with respect to [Formula: see text], if [Formula: see text] or [Formula: see text] and [Formula: see text] is adjacent to a vertex of positive weight. The function [Formula: see text] is a co-Roman dominating function, abbreviated CRDF if: (i) every vertex in [Formula: see text] is protected, and (ii) each [Formula: see text] with positive weight has a neighbor [Formula: see text] with [Formula: see text] such that the function [Formula: see text], defined by [Formula: see text], [Formula: see text] and [Formula: see text] for [Formula: see text], has no unprotected vertex. The weight of [Formula: see text] is [Formula: see text]. The co-Roman domination number of a graph [Formula: see text], denoted by [Formula: see text], is the minimum weight of a co-Roman dominating function on [Formula: see text]. In this paper, we present some new sharp bounds on [Formula: see text]. Some of our results improve the previous bounds.


Author(s):  
Amit Sharma ◽  
Jakkepalli Pavan Kumar ◽  
P. Venkata Subba Reddy ◽  
S. Arumugam

Let [Formula: see text] be a connected graph. A function [Formula: see text] is called a Roman dominating function if every vertex [Formula: see text] with [Formula: see text] is adjacent to a vertex [Formula: see text] with [Formula: see text]. If further the set [Formula: see text] is an independent set, then [Formula: see text] is called an outer independent Roman dominating function (OIRDF). Let [Formula: see text] and [Formula: see text]. Then [Formula: see text] is called the outer independent Roman domination number of [Formula: see text]. In this paper, we prove that the decision problem for [Formula: see text] is NP-complete for chordal graphs. We also show that [Formula: see text] is linear time solvable for threshold graphs and bounded tree width graphs. Moreover, we show that the domination and outer independent Roman domination problems are not equivalent in computational complexity aspects.


2018 ◽  
Vol 10 (02) ◽  
pp. 1850020 ◽  
Author(s):  
J. Amjadi

Let [Formula: see text] be a finite simple digraph with vertex set [Formula: see text]. A signed total Roman dominating function (STRDF) on a digraph [Formula: see text] is a function [Formula: see text] such that (i) [Formula: see text] for every [Formula: see text], where [Formula: see text] consists of all inner neighbors of [Formula: see text], and (ii) every vertex [Formula: see text] for which [Formula: see text] has an inner neighbor [Formula: see text] for which [Formula: see text]. The weight of an STRDF [Formula: see text] is [Formula: see text]. The signed total Roman domination number [Formula: see text] of [Formula: see text] is the minimum weight of an STRDF on [Formula: see text]. A set [Formula: see text] of distinct STRDFs on [Formula: see text] with the property that [Formula: see text] for each [Formula: see text] is called a signed total Roman dominating family (STRD family) (of functions) on [Formula: see text]. The maximum number of functions in an STRD family on [Formula: see text] is the signed total Roman domatic number of [Formula: see text], denoted by [Formula: see text]. In this paper, we initiate the study of signed total Roman domatic number in digraphs and we present some sharp bounds for [Formula: see text]. In addition, we determine the signed total Roman domatic number of some classes of digraphs.


Sign in / Sign up

Export Citation Format

Share Document