dominating function
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 62)

H-INDEX

5
(FIVE YEARS 2)

Author(s):  
Zehui Shao ◽  
Saeed Kosari ◽  
Hadi Rahbani ◽  
Mehdi Sharifzadeh ◽  
Seyed Mahmoud Sheikholeslami

A Roman dominating function (RD-function) on a graph $G = (V, E)$ is a function $f: V \longrightarrow \{0, 1, 2\}$ satisfying the condition that every vertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex $v$ for which $f(v) = 2$. An Roman dominating function $f$ in a graph $G$ is perfect Roman dominating function (PRD-function) if  every vertex $u$ with $f(u) = 0$ is adjacent to exactly one vertex  $v$ for which $f(v) = 2$. The (perfect) Roman domination number $\gamma_R(G)$ ($\gamma_{R}^{p}(G)$) is the minimum weight of an (perfect) Roman dominating function on $G$.  We say that $\gamma_{R}^{p}(G)$ strongly equals $\gamma_R(G)$, denoted by $\gamma_{R}^{p}(G)\equiv \gamma_R(G)$, if every RD-function on $G$ of minimum weight is a PRD-function. In this paper we  show that for a given graph $G$, it is NP-hard to decide whether $\gamma_{R}^{p}(G)= \gamma_R(G)$ and also we provide a constructive characterization of trees $T$ with $\gamma_{R}^{p}(T)\equiv \gamma_R(T)$.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 119
Author(s):  
Darja Rupnik Poklukar ◽  
Janez Žerovnik

A double Roman dominating function on a graph G=(V,E) is a function f:V→{0,1,2,3} satisfying the condition that every vertex u for which f(u)=0 is adjacent to at least one vertex assigned 3 or at least two vertices assigned 2, and every vertex u with f(u)=1 is adjacent to at least one vertex assigned 2 or 3. The weight of f equals w(f)=∑v∈Vf(v). The double Roman domination number γdR(G) of a graph G equals the minimum weight of a double Roman dominating function of G. We obtain closed expressions for the double Roman domination number of generalized Petersen graphs P(5k,k). It is proven that γdR(P(5k,k))=8k for k≡2,3mod5 and 8k≤γdR(P(5k,k))≤8k+2 for k≡0,1,4mod5. We also improve the upper bounds for generalized Petersen graphs P(20k,k).


Author(s):  
P. Roushini Leely Pushpam ◽  
B. Mahavir ◽  
M. Kamalam

Let [Formula: see text] be a graph and [Formula: see text] be a Roman dominating function defined on [Formula: see text]. Let [Formula: see text] be some ordering of the vertices of [Formula: see text]. For any [Formula: see text], [Formula: see text] is defined by [Formula: see text]. If for all [Formula: see text], [Formula: see text], we have [Formula: see text], that is [Formula: see text], for some [Formula: see text], then [Formula: see text] is called a resolving Roman dominating function (RDF) on [Formula: see text]. The weight of a resolving RDF [Formula: see text] on [Formula: see text] is [Formula: see text]. The minimum weight of a resolving RDF on [Formula: see text] is called the resolving Roman domination number of [Formula: see text] and is denoted by [Formula: see text]. A resolving RDF on [Formula: see text] with weight [Formula: see text] is called a [Formula: see text]-function on [Formula: see text]. In this paper, we find the resolving Roman domination number of certain well-known classes of graphs. We also categorize the class of graphs whose resolving Roman domination number equals their order.


Author(s):  
Pallavi Sangolli ◽  
Manjula C. Gudgeri ◽  
. Varsha ◽  
Shailaja S. Shirkol

The concept of Domination in graphs has application to the study of DNA structures. For investigating the chemical and physical properties, several topological indices used are Wiener index, Randic index, Zagreb index, Kier & Hall index that depends on vertex degree and distance sum, and have been used extensively for QSAR and QSPR studies. A Roman Dominating Function of G is function f: V→ {0, 1, 2} such that every vertex v for which f (v) = 0 has a neighbor u with f(u) = 2. The weight of a Roman dominating function f is w (f) =   . The Roman domination number of a graph G is denoted by (G) and is the minimum weight of all possible Roman dominating functions. In this paper, we find Roman domination number of some chemicals graphs such as saturated hydrocarbons and unsaturated hydrocarbons, hexagonal chain, pyrene, Hexabenzocoronene, H-Phenylenic nanotube and N-Napthelenic nanotube.


Author(s):  
Kijung Kim

Let $G$ be a finite simple graph with vertex set $V(G)$ and edge set $E(G)$. A function $f : V(G) \rightarrow \mathcal{P}(\{1, 2, \dotsc, k\})$ is a \textit{$k$-rainbow dominating function} on $G$ if for each vertex $v \in V(G)$ for which $f(v)= \emptyset$, it holds that $\bigcup_{u \in N(v)}f(u) = \{1, 2, \dotsc, k\}$. The weight of a $k$-rainbow dominating function is the value $\sum_{v \in V(G)}|f(v)|$. The \textit{$k$-rainbow domination number} $\gamma_{rk}(G)$ is the minimum weight of a $k$-rainbow dominating function on $G$. In this paper, we initiate the study of $k$-rainbow domination numbers in middle graphs. We define the concept of a middle $k$-rainbow dominating function, obtain some bounds related to it and determine the middle $3$-rainbow domination number of some classes of graphs. We also provide upper and lower bounds for the middle $3$-rainbow domination number of trees in terms of the matching number. In addition, we determine the $3$-rainbow domatic number for the middle graph of paths and cycles.


Author(s):  
J. Amjadi ◽  
H. Sadeghi

For a graph [Formula: see text], a double Roman dominating function is a function [Formula: see text] having the property that if [Formula: see text], then vertex [Formula: see text] must have at least two neighbors assigned [Formula: see text] under [Formula: see text] or one neighbor with [Formula: see text], and if [Formula: see text], then vertex [Formula: see text] must have at least one neighbor with [Formula: see text]. The weight of a double Roman dominating function [Formula: see text] is the value [Formula: see text]. The double Roman domination number of a graph [Formula: see text], denoted by [Formula: see text], equals the minimum weight of a double Roman dominating function on [Formula: see text]. The double Roman domination subdivision number [Formula: see text] of a graph [Formula: see text] is the minimum number of edges that must be subdivided (each edge in [Formula: see text] can be subdivided at most once) in order to increase the double Roman domination number. In this paper, we first show that the decision problem associated with sd[Formula: see text] is NP-hard and then establish upper bounds on the double Roman domination subdivision number for arbitrary graphs.


Author(s):  
J. Amjadi ◽  
F. Pourhosseini

Let [Formula: see text] be a finite and simple digraph with vertex set [Formula: see text]. A double Roman dominating function (DRDF) on digraph [Formula: see text] is a function [Formula: see text] such that every vertex with label 0 has an in-neighbor with label 3 or two in-neighbors with label 2 and every vertex with label 1 have at least one in-neighbor with label at least 2. The weight of a DRDF [Formula: see text] is the value [Formula: see text]. A DRDF [Formula: see text] on [Formula: see text] with no isolated vertex is called a total double Roman dominating function if the subgraph of [Formula: see text] induced by the set [Formula: see text] has no isolated vertex. In this paper, we initiate the study of the total double Roman domination number in digraphs and show its relationship to other domination parameters. In particular, we present some bounds for the total double Roman domination number and we determine the total double Roman domination number of some classes of digraphs.


Author(s):  
Amit Sharma ◽  
Jakkepalli Pavan Kumar ◽  
P. Venkata Subba Reddy ◽  
S. Arumugam

Let [Formula: see text] be a connected graph. A function [Formula: see text] is called a Roman dominating function if every vertex [Formula: see text] with [Formula: see text] is adjacent to a vertex [Formula: see text] with [Formula: see text]. If further the set [Formula: see text] is an independent set, then [Formula: see text] is called an outer independent Roman dominating function (OIRDF). Let [Formula: see text] and [Formula: see text]. Then [Formula: see text] is called the outer independent Roman domination number of [Formula: see text]. In this paper, we prove that the decision problem for [Formula: see text] is NP-complete for chordal graphs. We also show that [Formula: see text] is linear time solvable for threshold graphs and bounded tree width graphs. Moreover, we show that the domination and outer independent Roman domination problems are not equivalent in computational complexity aspects.


Author(s):  
Jonecis Dayap ◽  
Nasrin Dehgardi ◽  
Leila Asgharsharghi ◽  
Seyed Mahmoud Sheikholeslami

For any integer [Formula: see text], a minus total [Formula: see text]-dominating function is a function [Formula: see text] satisfying [Formula: see text] for every [Formula: see text], where [Formula: see text]. The minimum of the values of [Formula: see text], taken over all minus total [Formula: see text]-dominating functions [Formula: see text], is called the minus total [Formula: see text]-domination number and is denoted by [Formula: see text]. In this paper, we initiate the study of minus total [Formula: see text]-domination in graphs, and we present different sharp bounds on [Formula: see text]. In addition, we determine the minus total [Formula: see text]-domination number of some classes of graphs. Some of our results are extensions of known properties of the minus total domination number [Formula: see text].


2021 ◽  
Vol 1947 (1) ◽  
pp. 012014
Author(s):  
M. G. Karunambigai ◽  
A. Sathishkumar
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document