Majority Roman domination in graphs

Author(s):  
S. Anandha Prabhavathy

A Majority Roman Dominating Function (MRDF) on a graph [Formula: see text] is a function [Formula: see text] satisfying the conditions that (i) the sum of its function values over at least half the closed neighborhood is at least one and (ii) every vertex [Formula: see text] for which [Formula: see text] is adjacent to at least one vertex [Formula: see text] for which [Formula: see text]. The weight of a MRDF is the sum of its function values over all vertices. The Majority Roman Domination Number of a graph [Formula: see text], denoted by [Formula: see text], is defined as [Formula: see text]. In this paper, we initiate the study of Majority Roman Domination in Graphs.

2017 ◽  
Vol 48 (2) ◽  
pp. 135-147 ◽  
Author(s):  
Seyed Mahmoud Sheikholeslami ◽  
Rana Khoeilar ◽  
Leila Asgharsharghi

Let $G=(V,E)$ be a finite and simple graph of order $n$ and maximum degree $\Delta$. A signed strong Roman dominating function (abbreviated SStRDF) on a graph $G$ is a function $f:V\to \{-1,1,2,\ldots,\lceil\frac{\Delta}{2}\rceil+1\}$ satisfying the conditions that (i) for every vertex $v$ of $G$, $\sum_{u\in N[v]} f(u)\ge 1$, where $N[v]$ is the closed neighborhood of $v$ and (ii) every vertex $v$ for which $f(v)=-1$ is adjacent to at least one vertex $u$ for which $f(u)\ge 1+\lceil\frac{1}{2}|N(u)\cap V_{-1}|\rceil$, where $V_{-1}=\{v\in V \mid f(v)=-1\}$. The minimum of the values $\sum_{v\in V} f(v)$, taken over all signed strong Roman dominating functions $f$ of $G$, is called the signed strong Roman domination number of $G$ and is denoted by $\gamma_{ssR}(G)$. In this paper we initiate the study of the signed strong Roman domination in graphs and present some (sharp) bounds for this parameter.


Author(s):  
P. Roushini Leely Pushpam ◽  
B. Mahavir ◽  
M. Kamalam

Let [Formula: see text] be a graph and [Formula: see text] be a Roman dominating function defined on [Formula: see text]. Let [Formula: see text] be some ordering of the vertices of [Formula: see text]. For any [Formula: see text], [Formula: see text] is defined by [Formula: see text]. If for all [Formula: see text], [Formula: see text], we have [Formula: see text], that is [Formula: see text], for some [Formula: see text], then [Formula: see text] is called a resolving Roman dominating function (RDF) on [Formula: see text]. The weight of a resolving RDF [Formula: see text] on [Formula: see text] is [Formula: see text]. The minimum weight of a resolving RDF on [Formula: see text] is called the resolving Roman domination number of [Formula: see text] and is denoted by [Formula: see text]. A resolving RDF on [Formula: see text] with weight [Formula: see text] is called a [Formula: see text]-function on [Formula: see text]. In this paper, we find the resolving Roman domination number of certain well-known classes of graphs. We also categorize the class of graphs whose resolving Roman domination number equals their order.


2020 ◽  
Vol 12 (02) ◽  
pp. 2050020
Author(s):  
S. Nazari-Moghaddam ◽  
L. Volkmann

A double Roman dominating function (DRDF) on a graph [Formula: see text] is a function [Formula: see text] such that (i) every vertex [Formula: see text] with [Formula: see text] is adjacent to at least two vertices assigned a [Formula: see text] or to at least one vertex assigned a [Formula: see text] and (ii) every vertex [Formula: see text] with [Formula: see text] is adjacent to at least one vertex [Formula: see text] with [Formula: see text] The weight of a DRDF is the sum of its function values over all vertices. The double Roman domination number [Formula: see text] equals the minimum weight of a DRDF on [Formula: see text] The concept of criticality with respect to various operations on graphs has been studied for several domination parameters. In this paper, we study the concept of criticality for double Roman domination in graphs. In addition, we characterize double Roman domination edge super critical graphs and we will give several characterizations for double Roman domination vertex (edge) critical graphs.


Author(s):  
Hossein Abdollahzadeh Ahangar ◽  
Jafar Amjadi ◽  
Mustapha Chellali ◽  
S. Kosari ◽  
Vladimir Samodivkin ◽  
...  

Let $G=(V,E)$ be a simple graph with vertex set $V$ and edge set $E$. A mixed Roman dominating function (MRDF) of $G$ is a function $f:V\cup E\rightarrow \{0,1,2\}$ satisfying the condition that every element $x\in V\cup E$ for which $f(x)=0$ is adjacent or incident to at least one element $% y\in V\cup E$ for which $f(y)=2$. The weight of a mixed Roman dominating function $f$ is $\omega (f)=\sum_{x\in V\cup E}f(x)$. The mixed Roman domination number $\gamma _{R}^{\ast }(G)$ of $G$ is the minimum weight of a mixed Roman dominating function of $G$. We first show that the problem of computing $\gamma _{R}^{\ast }(G)$ is NP-complete for bipartite graphs and then we present upper and lower bounds on the mixed Roman domination number, some of them are for the class of trees.


Author(s):  
Amit Sharma ◽  
Jakkepalli Pavan Kumar ◽  
P. Venkata Subba Reddy ◽  
S. Arumugam

Let [Formula: see text] be a connected graph. A function [Formula: see text] is called a Roman dominating function if every vertex [Formula: see text] with [Formula: see text] is adjacent to a vertex [Formula: see text] with [Formula: see text]. If further the set [Formula: see text] is an independent set, then [Formula: see text] is called an outer independent Roman dominating function (OIRDF). Let [Formula: see text] and [Formula: see text]. Then [Formula: see text] is called the outer independent Roman domination number of [Formula: see text]. In this paper, we prove that the decision problem for [Formula: see text] is NP-complete for chordal graphs. We also show that [Formula: see text] is linear time solvable for threshold graphs and bounded tree width graphs. Moreover, we show that the domination and outer independent Roman domination problems are not equivalent in computational complexity aspects.


Author(s):  
Davood Bakhshesh

Let [Formula: see text] be a graph with the vertex set [Formula: see text]. A function [Formula: see text] is called a Roman dominating function of [Formula: see text], if every vertex [Formula: see text] with [Formula: see text] is adjacent to at least one vertex [Formula: see text] with [Formula: see text]. The weight of a Roman dominating function [Formula: see text] is equal to [Formula: see text]. The minimum weight of a Roman dominating function of [Formula: see text] is called the Roman domination number of [Formula: see text], denoted by [Formula: see text]. In this paper, we initiate the study of a variant of Roman dominating functions. A function [Formula: see text] is called an isolate Roman dominating function of [Formula: see text], if [Formula: see text] is a Roman dominating function and there is a vertex [Formula: see text] with [Formula: see text] which is not adjacent to any vertex [Formula: see text] with [Formula: see text]. The minimum weight of an isolate Roman dominating function of [Formula: see text] is called the isolate Roman domination number of [Formula: see text], denoted by [Formula: see text]. We present some upper bound on the isolate Roman domination number of a graph [Formula: see text] in terms of its Roman domination number and its domination number. Moreover, we present some classes of graphs [Formula: see text] with [Formula: see text]. Finally, we show that the decision problem associated with the isolate Roman dominating functions is NP-complete for bipartite graphs and chordal graphs.


Author(s):  
Pallavi Sangolli ◽  
Manjula C. Gudgeri ◽  
. Varsha ◽  
Shailaja S. Shirkol

The concept of Domination in graphs has application to the study of DNA structures. For investigating the chemical and physical properties, several topological indices used are Wiener index, Randic index, Zagreb index, Kier & Hall index that depends on vertex degree and distance sum, and have been used extensively for QSAR and QSPR studies. A Roman Dominating Function of G is function f: V→ {0, 1, 2} such that every vertex v for which f (v) = 0 has a neighbor u with f(u) = 2. The weight of a Roman dominating function f is w (f) =   . The Roman domination number of a graph G is denoted by (G) and is the minimum weight of all possible Roman dominating functions. In this paper, we find Roman domination number of some chemicals graphs such as saturated hydrocarbons and unsaturated hydrocarbons, hexagonal chain, pyrene, Hexabenzocoronene, H-Phenylenic nanotube and N-Napthelenic nanotube.


2013 ◽  
Vol 05 (03) ◽  
pp. 1350011
Author(s):  
M. KAMAL KUMAR ◽  
L. SUDERSHAN REDDY

Motivated by the article in Scientific American [7], Michael A Henning and Stephen T Hedetniemi explored the strategy of defending the Roman Empire. Cockayne defined Roman dominating function (RDF) on a Graph G = (V, E) to be a function f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. For a real valued function f : V → R the weight of f is w(f) = ∑v∈V f(v). The Roman domination number (RDN) denoted by γR(G) is the minimum weight among all RDF in G. If V – D contains a roman dominating function f1 : V → {0, 1, 2}. "D" is the set of vertices v for which f(v) > 0. Then f1 is called Inverse Roman Dominating function (IRDF) on a graph G w.r.t. f. The inverse roman domination number (IRDN) denoted by [Formula: see text] is the minimum weight among all IRDF in G. In this paper we find few results of IRDN.


Symmetry ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 831 ◽  
Author(s):  
Abel Cabrera Martínez ◽  
Luis P. Montejano ◽  
Juan A. Rodríguez-Velázquez

Given a graph G = ( V , E ) , a function f : V → { 0 , 1 , 2 , ⋯ } is said to be a total dominating function if ∑ u ∈ N ( v ) f ( u ) > 0 for every v ∈ V , where N ( v ) denotes the open neighbourhood of v. Let V i = { x ∈ V : f ( x ) = i } . We say that a function f : V → { 0 , 1 , 2 } is a total weak Roman dominating function if f is a total dominating function and for every vertex v ∈ V 0 there exists u ∈ N ( v ) ∩ ( V 1 ∪ V 2 ) such that the function f ′ , defined by f ′ ( v ) = 1 , f ′ ( u ) = f ( u ) - 1 and f ′ ( x ) = f ( x ) whenever x ∈ V ∖ { u , v } , is a total dominating function as well. The weight of a function f is defined to be w ( f ) = ∑ v ∈ V f ( v ) . In this article, we introduce the study of the total weak Roman domination number of a graph G, denoted by γ t r ( G ) , which is defined to be the minimum weight among all total weak Roman dominating functions on G. We show the close relationship that exists between this novel parameter and other domination parameters of a graph. Furthermore, we obtain general bounds on γ t r ( G ) and, for some particular families of graphs, we obtain closed formulae. Finally, we show that the problem of computing the total weak Roman domination number of a graph is NP-hard.


2020 ◽  
Vol 13 (3) ◽  
pp. 529-548
Author(s):  
Leonard Mijares Paleta ◽  
Ferdinand Paler Jamil

A perfect Roman dominating function on a graph G = (V (G), E(G)) is a function f : V (G) → {0, 1, 2} for which each u ∈ V (G) with f(u) = 0 is adjacent to exactly one vertex v ∈ V (G) with f(v) = 2. The weight of a perfect Roman dominating function f is the value ωG(f) = Pv∈V (G) f(v). The perfect Roman domination number of G is the minimum weight of a perfect Roman dominating function on G. In this paper, we study the perfect Roman domination numbers of graphs under some binary operation


Sign in / Sign up

Export Citation Format

Share Document